Comprehensive References:

- The Muon Smasher's Guide
- <u>Towards a Muon Collider</u>

Collider Specifications

Source: Interim report for the International Muon

Collider Collaboration (IMCC)

Parameter	Units	Energy Staging		Luminosity Staging	
		Stage 1	Stage 2	Stage 1	Stage 2
Center-of-mass energy	TeV	3	10	10	
Integrated Luminosity	ab-1	1	10	10	
Number of Interaction Points		2		2	
Estimated Year for First Collisions		2049	2056	2049	2058
Time Running at Stage	years	5	5	8	4+
Wall Power	MW				
Accelerator Length*	km	26.5	Stage 1 + 45	72	
Future Upgrade Paths		N/A, upgrade would be far away in 2060+.			

* Sum of all accelerator components. Numbers from WIP Parameters Report.

Event Production

 Annihilation: Muon beams use entire energy in collisions (no PDFs).

100 TeV pp \approx 10-30 TeV $\mu\mu$

- VBF: primary production mechanism for most processes.
 - Allows to "scan" CM energies.
 - High cross-section for most processes.
 - ο Is a WW or γγ collider.
- Very low QCD backgrounds.
 - Clean *physics* environment.

Higgs Physics

Running at 125 GeV is not planned due to very high BIB (muons have very low Γ).

Main production mechanism is VBF.

4% precision on Higgs Self-coupling sensitive to *SM Higgs potential shape*.

Beam Induced Background

- BIB = muon beam decays and strike the detector
- Main challenge for reconstruction and readout
- Two key mitigations

Tungsten

nozzle

- **10°** tungsten nozzle to shield from beam decay products
- Precision timing information from detectors

FLUKA simulation of BIB before reaching the detector. FLUKA simulation of BIB before reaching the detector.

Detector Requirements

• High occupancy (10x HL-LHC), but low rad damage (1x HL-LHC) due to BIB.

ITk Layer Position at equivalent radii	ITk Hit Density [mm ⁻²]	MCC Equiv Hit Density [mm ⁻²]
Pix Lay 0	0.643	3.68
Pix Lay 1	0.022	0.51
Str Lay 1	0.003	0.03

Tracking detector comparison between μC and ATLAS ITk

