
Project Input to UK ESPPU drafting day

Claire Gwenlan (Oxford)
Monica D'Onofrio, Uta Klein (Liverpool)
Paul Newman (Birmingham)

Recirculating Energy-Recovery Linac, colliding with LHC hadrons

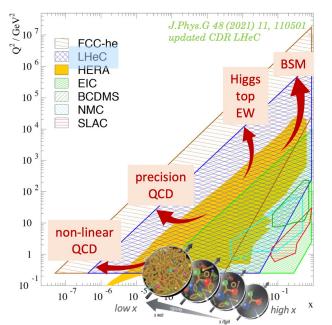
Final upgrade to LHC

Continuity of collisions in 2040s

Bridging towards next major collider at CERN

- Potentially 'affordable'
- Technically realisable
- Exploring sustainable acceleration with ERL and SRF-cavities
- Developing new detector technologies
- Enabling HL-LHC precision
- Complementing HL-LHC H programme
- Extending energy frontier sensitivity

Running Scenarios in CDR-Update (July 2020)

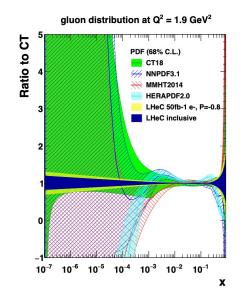

- $e^{\pm}p$ 50 GeV x 7 TeV (\sqrt{s} =1.2 TeV) with lepton polarization up to 80%

- Concurrent with final phase of LHC or standalone

[Pi	le-	up	~(). 1	
-----	-----	----	----	-------------	--

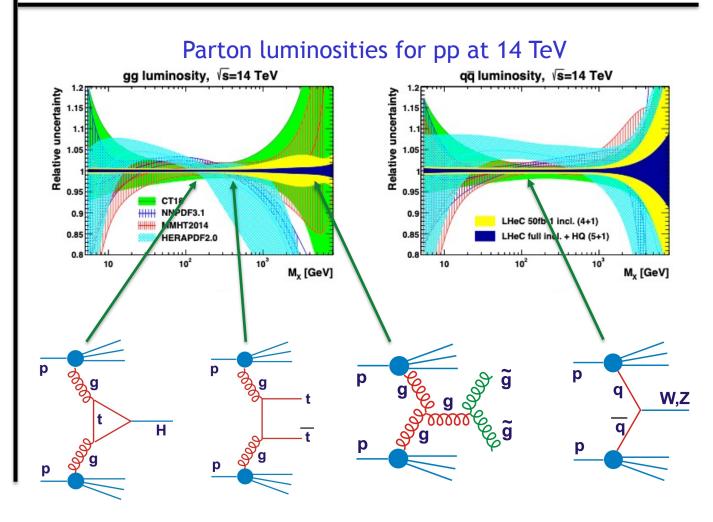
Parameter	${f Unit}$	$\operatorname{Run} 5 \ \operatorname{Period}$	Run 6 Period	Dedicated
Brightness $N_p/(\gamma \epsilon_p)$	$10^{17} { m m}^{-1}$	2.2/2.5	2.2/2.5	2.2/2.5
Electron beam current	mA	15	25	50?
Proton β^*	\mathbf{m}	0.1	0.7	0.7
Peak luminosity	$10^{34}\mathrm{cm^{-2}s^{-1}}$	0.5	1.2	2.4
Proton beam lifetime	h	16.7	16.7	100
Fill duration	h	11.7	11.7	21
Turnaround time	h	4	4	3
Overall efficiency	%	54	54	60
Physics time / year	days	160	180	185
Annual integrated lumi.	$ m fb^{-1}$	20	50	180

Ultimately 1ab-1 in a few years

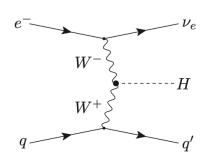

- Combines properties of General Purpose energy frontier explorer and comprehensive scattering experiment, probing nucleon at unprecedented precision and parton densities
- For further details:

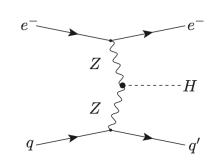
CDR Update: arXiv:2007.14491

Durham talks (Gwenlan, d'Onofrio, Newman)


e.g. Proton PDF Precision: Enabling HL-LHC

e.g. Gluon Density precision transformed in 1-2 years running with HL-LHC

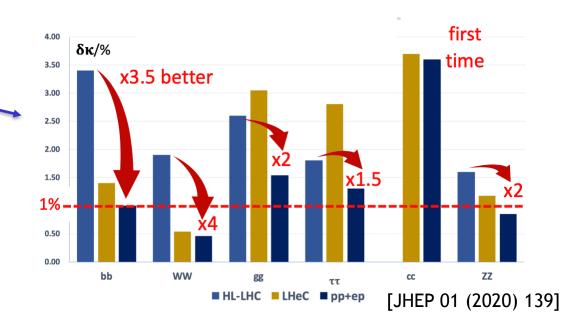



- Discovers novel very low x dynamics
- α_s to 0.2%
- $\sin^2\theta_w$ to 0.00015
- -

- Extends upper mass reach of many LHC BSM searches
- Facilitates LHC precision measurements (e.g. M_W PDF systs → 2 MeV)

e.g. (SM) Higgs Programme

Dominant production mechanism charged current (WW), distinguished event-by-event from sub-dominant neutral current (ZZ)


Charged Current cross section ~ 0.2pb for P=-0.8 \rightarrow ~200,000 events for 1ab⁻¹

LHeC standalone precision on κ parameters

$\mathcal{L}[1/ab]$	$bar{b}$	ww	gg	$\tau\tau$	$c\bar{c}$	ZZ	γγ
1	1.9	0.70	3.5	3.1	3.8	1.2	6.8

Higgs Coupling Improvement with respect to HL-LHC

ep:pp complementarity leads to full exploitation of LHC capability for scalar sector

Requested Parameters

Environmental cost of construction: Annual environmental cost of operation: Awaiting lab directors' report.

Small tunnel length &

ERL / SRF technologies

→ relatively modest impact

Baseline costed estimated in 2018 at CHF1.4B for

Financial cost: 50 GeV electrons (1/5 of LHC circumference)

[O. Bruning, CERN-ACC-2018-0061]

Dedicated submission planned to ESPPU: Yes

Centre-of-Mass Energy: 1.2 TeV for baseline 50 GeV electron option

Integrated Luminosity: A few x 100 fb⁻¹ in concurrent operation with HL-LHC

Of order 1 ab⁻¹ for a few years standalone operation

Number of Interaction Points: 1 (by design)

Time running: A few years

Wall power: 100 MW (by design) ~ LHC now.

Accelerator length: 5.4km for baseline 50 GeV electron option

Estimated year of 1st collisions: Late 2030s or beyond

Future upgrade paths: Very similar design for FCC-eh