Non-decoupling scalars at future detectors [arXiv:2409.18177 w/ Dave Sutherland]

Graeme Crawford¹

¹School of Physics and Astronomy University of Glasgow

December 16, 2024

Models vastly different from SM prediction remain viable ...

What is the nature of electroweak symmetry breaking?

Models vastly different from SM prediction remain viable ...

Loryons { are capped at the TeV scale by unitarity can be scalars or vector-like fermions are a finite target for future lepton colliders

$$\mathcal{L}_{mass} = -\underbrace{\left(m_{ex}^{2} + \lambda_{h\phi} |H|^{2}\right)}_{M^{2}} |\Phi|^{2} \\ -\lambda'_{h\phi}(H^{\dagger} T^{a} H)(\Phi^{\dagger} T^{a} \Phi) - \lambda''_{h\phi}(\tilde{\Phi}^{\dagger} T^{a} \Phi)(H^{\dagger} T^{a} \tilde{H} + h.c)$$
• $M^{2} = m_{ex}^{2} + \frac{1}{2}\lambda_{h\phi}v^{2}$ Common mass of each component
• $f = \frac{\lambda_{h\phi}v^{2}}{2M^{2}}$ Fraction of mass obtained from Higgs
• $r_{1} = \frac{\lambda'_{h\phi}v^{2}}{4M^{2}}$ Mass splitting parameter
• $r_{2} = \frac{\lambda''_{h\phi}v^{2}}{4M^{2}}$ Additional mass splitting for $|Y| = \frac{1}{2}$ irreps

m _{ex} is	an expl	icit mas	s term
--------------------	---------	----------	--------

Graeme Crawford (University of Glasgow)

문 논 문

$\mathsf{SM} \subset \mathsf{SMEFT} \subset \mathsf{HEFT}$

$$\begin{aligned} \mathsf{SMEFT} \Rightarrow \mathsf{Expand} \ \mathsf{about} \ |\Phi| &= 0 \\ \mathsf{HEFT} \Rightarrow \ \mathsf{Expand} \ \mathsf{about} \ |\Phi| &= v \end{aligned}$$

Integrate out a singlet S at tree-level,

$$\mathcal{L}_{UV} = \frac{1}{2} (\partial S)^2 - gSJ - \frac{1}{2} M^2 (|\Phi|^2) S^2.$$

Graeme Crawford (University of Glasgow)

Non-decoupling theories require HEFT

Integrate out a singlet S at tree-level,

$$\mathcal{L}_{UV} = rac{1}{2} (\partial S)^2 - gSJ - rac{1}{2} M^2 (|\Phi|^2) S^2 \,.$$

$$\frac{-g^2 J^2}{M^2(|\Phi|^2)} \left(\frac{\lambda_{h\phi} v^2}{M^2(|\Phi|^2)}\right)$$

Non-decoupling theories require HEFT

Expand around $|\Phi| = 0$, à la SMEFT;

$$\Rightarrow \mathcal{L}_{\mathsf{EFT}} = \frac{g^2 J^2}{M^2(|\Phi|^2)} \Big(1 - \frac{\lambda_{h\phi} v^2}{M^2(|\Phi|^2)} + \Big(\frac{\lambda_{h\phi} v^2}{M^2(|\Phi|^2)} \Big)^2 - \dots \Big)$$

$$\Rightarrow 2f = rac{\lambda_{h\phi}v^2}{M^2(|\Phi|^2)} < 1$$

Mass spectrum of charged multiplets

 $\begin{pmatrix} H^+ \\ H^0 \\ H^- \end{pmatrix}$

Real triplet
$$(Y = 0)$$
 Inert 2HDM $(Y = \frac{1}{2})$

$$\begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}} (H + iA) \end{pmatrix}$$

$$m_{H^+}^2 = M^2 (1 - r_1)$$

 $m_{H^0}^2 = M^2$
 $m_{H^-}^2 = M^2 (1 + r_1)$

$$m_{H^{\pm}}^{2} = M^{2} \left(1 - \frac{1}{2} r_{1} \right)$$
$$m_{H}^{2} = M^{2} \left(1 + \frac{1}{2} r_{1} + 2r_{2} \right)$$
$$m_{A}^{2} = M^{2} \left(1 + \frac{1}{2} r_{1} - 2r_{2} \right)$$

Neutral singlet:
$$m_s^2 = M^2$$

2

Graeme Crawford (University of Glasgow)

Oblique parameters measure mass splittings

$$M^{2} = m_{ex}^{2} + \frac{1}{2}\lambda_{h\phi}v^{2} \qquad r_{1} = \frac{\lambda'_{h\phi}v^{2}}{4M^{2}} \qquad r_{2} = \frac{\lambda''_{h\phi}v^{2}}{4M^{2}}$$
Observable
Representative diagram
Scaling
$$W_{3} \sim \sqrt{\frac{\phi'}{\phi}} \sim B \qquad r_{1}YC(j) \text{ or } r_{2}^{2}YC(j)$$

$$T \qquad W^{+}/W_{3} \sim \sqrt{\frac{\phi'}{\phi}} \sim W^{-}/W_{3} \qquad M^{2}r_{1}^{2}C(j) \text{ or } M^{2}r_{2}^{2}C(j)$$

Impose \mathbb{Z}_2 symmetry: study deviations to gauge 2-pt functions at 1-loop.

$$C(j) = [(T^3)^2] = \frac{2}{3}j(j + \frac{1}{2})(j + 1)$$

Graeme Crawford (University of Glasgow)

Constraining r_1 and r_2 at FCC-ee

FCC-ee ellipse: (de Blas et.al 2021) $\Rightarrow \sim 10\%$ sensitivity for 2HDM splittings, smaller for triplets.

Higgs coupling modifiers provide indirect bounds

$$\left(f = \frac{\lambda_{h\phi}v^2}{2M^2} > 0.5 \qquad M^2 = m_{ex}^2 + \frac{1}{2}\lambda_{h\phi}v^2\right)$$

κ_{γ} – Any charged Loryon can be found at FCC-ee ¹

Using 2σ projected κ_{γ} sensitivities from (Tab. 4.2, Abada et.al 2022). \Rightarrow sensitive to everything above f > 0.5.

¹or similar machine

Graeme Crawford (University of Glasgow)

Electroweak Baryogenesis

- Baryogenesis could be explained by a strong first order phase transition (SFOPT) in the early Universe (see Quiros 1999, Croon 2023 for reviews).
- Not possible in SM, but adding scalars induces potential barrier (enhances \mathfrak{h}^3 term).

strong transition ensures baryon asymmetry not washed_out at later time. - 🚊 🤊 🔍

- During transition, bubbles of the new phase collide
 ⇒ produce gravitational wave (GW) background.
- Determined by the energy released (α) and the duration of the phase transition ($\sim \beta$),

$$\alpha = \left(\Delta V - \frac{T_{\rm nuc}}{4} \Delta \frac{\mathrm{d}V}{\mathrm{d}T}\right) / \frac{g_{\rm eff} \pi^2 T_{\rm nuc}^4}{30} ,$$
$$\beta / H_* = \frac{\mathrm{d}S_3}{\mathrm{d}T} \bigg|_{T_{\rm nuc}} - \frac{S_3}{T_{\rm nuc}} .$$

(Caprini et.al 2016, 2020)

• Approx bounds for LISA: $\log(\beta/H_*) - 1.2 \log(\alpha) < 8.8$

(Banta 2022)

 $g_{\mathrm{eff}} \equiv$ effective relativistic d.o.f

SFOPT/GW constraints

$$\left(f = rac{\lambda_{h\phi}v^2}{2M^2} > 0.5 \qquad M^2 = m_{ex}^2 + rac{1}{2}\lambda_{h\phi}v^2
ight)$$

Bounds for multiplets with larger d.o.f will move towards the bottom left.

following (Banta 2022)

Graeme Crawford (University of Glasgow)

- Motivation: non-decoupling physics may have important implications in understanding the **nature of EWSB**.
- Pheno: scalar Loryons can **induce a SFOPT** in the early Universe potential source of baryogenesis and a residual GW background.
- Search: present a **finite target for future colliders** virtually all of the parameter space accessible by FCC-hh.

Constraint dominated by $2 \rightarrow 2$ elastic scattering of Loryon with exchange of a Higgs – only tree-level diagram that grows as $\lambda_{h\phi}^2$.

Contributions of an arbitrary multiplet to the oblique parameters ${\cal W}$ and ${\cal Y}$ are given by;

$$\Delta W = \frac{1}{2^{\rho}} \underbrace{\frac{43}{180} \frac{g^2}{(4\pi)^2} \frac{m_W^2}{M^2}}_{\simeq 1.2 \times 10^{-5} \left(\frac{600 \text{ GeV}}{M}\right)^2} \times j(j + \frac{1}{2})(j + 1),$$

$$\Delta Y = \frac{1}{2^{\rho}} \underbrace{\frac{43}{60} \frac{g'^2}{(4\pi)^2} \frac{m_W^2}{M^2}}_{\simeq 1.0 \times 10^{-5} \left(\frac{600 \text{ GeV}}{M}\right)^2} \times Y^2(j + \frac{1}{2}).$$

A lower bound for the Real Triplet and Inert 2HDM models were found using 2d sensitivities for ΔW and ΔY (de Blas et.al 2016).

$$V_{\text{eff}}(\mathfrak{h}) = V_{0}(\mathfrak{h}) + \sum_{i} n_{i} V_{\text{CW,bos}}(m_{i}^{2}(\mathfrak{h})) + n_{t} V_{\text{CW,fer}}(m_{t}^{2}(\mathfrak{h})) + n_{\Phi} V_{\text{CW,bos}}(m_{\Phi}^{2}(\mathfrak{h}))$$

$$= \sum_{i} n_{i} V_{\text{T,bos}}(m_{i}^{2}(\mathfrak{h}), T) + n_{t} V_{\text{T,fer}}(m_{t}^{2}(\mathfrak{h}), T) + n_{\Phi} V_{\text{T,bos}}(m_{\Phi}^{2}(\mathfrak{h}))$$

$$= \underbrace{\sum_{i} n_{i} V_{\text{T,bos}}(m_{i}^{2}(\mathfrak{h}), T) + n_{t} V_{\text{T,fer}}(m_{t}^{2}(\mathfrak{h}), T) + n_{\Phi} V_{\text{T,bos}}(m_{\Phi}^{2}(\mathfrak{h}))}_{\text{finite temperature corrections}}$$

$$i = \{W_T, W_L, Z_T, Z_L, h, \chi, \gamma_L\}$$

 n_i (degrees of freedom) = {4, 2, 2, 1, 1, 3, 1}

 $v \to \mathfrak{h} \equiv v + h$

э

Field-dependent masses are shifted by contributions of hard thermal loops;

$$\Pi_i = \frac{\partial^2 V_T}{\partial f_i^2} \,,$$

e.g, the Higgs and Goldstones shift by,

$$\Pi_{h} = \Pi_{\chi} = \frac{1}{24} T^{2} \left(\frac{3}{2} {g'}^{2} + \frac{9}{2} g^{2} + 12 \lambda_{hh} + 6 y_{t}^{2} + n_{\text{Loryons}} \lambda \right) \,.$$

We use the Parwani scheme, inserting $m_i^2(\mathfrak{h}) \to m_i^2(\mathfrak{h}) + \Pi_i(\mathfrak{h}, T)$ directly into $V_{\text{eff}}(\mathfrak{h})$ (Parwani 1991).