Updates to the Dispersive Calculation of the Hadronic Vacuum Polarisation Contribution to Muon g - 2

Aidan Wright

University of Liverpool

Spin Precession

• The classical result for the magnetic moment of a particle with angular momentum *L* is

$$\boldsymbol{\mu_{cl}} = \frac{e}{2m}\boldsymbol{L}.$$

• The non-relativistic limit of the Dirac equation gives the Schrödinger equation with an interaction $-\mu \cdot B$ where

$$\mu = g \frac{e}{2m} \boldsymbol{S}.$$

and g = 2.

• QFT corrections to the fermion-photon vertex produce deviations from the Dirac case g = 2.

イロト 不得 トイヨト イヨト

э

HVP for g - 2

• Hadronic terms are non-perturbative \implies lattice or *dispersive* methods.

Dispersive Methods

- HVP contribution a_{μ}^{HVP} (above) depends on HVP operator $\Pi(k^2)$.
- Analyticity and Cauchy's theorem imply $\Pi(k^2) = \frac{k^2}{\pi} \int_{s_{th}}^{\infty} \frac{ds}{s} \frac{\text{Im}[\Pi(s)]}{s k^2 i\varepsilon}$.
- Unitarity leads to the optical theorem \implies Im $[\Pi(s)] = \frac{s}{4\pi\alpha} \sigma_{had}^0(s)$.
- The matrix element of the above can be decomposed over form factors $F_1(q^2)$ and $F_2(q^2)$, and the anomalous magnetic moment $a_{\mu} = F_2(0)$.

$$\implies a_{\mu}^{HVP} = \frac{1}{4\pi^3} \int_{s_{th}}^{\infty} ds \left(\sigma_{had}^0 \left(s \right) K \left(s \right) \right)$$

Dispersive Methods

• This calculation requires low energy $e^+e^- \rightarrow hadrons$ cross sections.

- Dependent on experimental data, especially the $\pi^+\pi^-$ channel (approximately 3/4 of the total result.)
- Clear procedure: combine lattice and dispersive predictions for HVP contribution and compare to experiment?

< ロ > < 同 > < 回 > < 回 >

Motivation

KNTW Procedure Situation and Outlook

"The Anomalous Anomaly"

- Theoretical picture for muon g 2 is unclear.
- Lattice results are consistent with the g 2 experiment results.
- Dispersive results were not, and are now internally inconsistent.
- Lots of work on the dispersive side before any conclusions can be safely drawn...

Relational Database

- Need to store cross section data (including energies and errors) and also steering flags at channel and dataset level.
- Data are stored in a relational SQL database used to build channel objects. (Replaces text files read in by FORTRAN.)

	channel id	cha	nnel name	num sets use	far use vp			dataset	_id	channel_id	use	num_data_points	experime	nt year	
0	- 1	#1	i^0¥gamma	- 5	Y			8	199	1	y.	11	S	ND 2018	
1	2	-	pi^+#pi^-	31	Y Y			1	200	1	ÿ.	62	s	ND 2016	
2	3	#pi^+#	pi^-#pi^0	20	- Y			2	201	1	y.	46	CMD	-2 2005	
3	4		eta#gamma	11	- Y			3	202	1	Y	30	s	ND 2003	
4	5	#pi^+#p	i^-2#pi^0	9	- Y			4	203	1	ý.	13	S	ND 2808	
															· · · ·
47	48		#eta#phi	6	- Y			268	8	99	У	97	Crystal ba	11 1986	
48	49		p#bar(p)	7	- Y			269	12	99	y	4	LE	NA 1982	
49	50		n#bar{n}	4	- Y			270	14	99	y .	1	DA	SP 1982	
50	98	Inclusive	data LOW	6	- Y			271	16	99	У	2	CU	SB 1982	
51	99	Inclusive	data HIGH	19	- Y			272	17	99	ý.	2	DH	HM 1988	
							•								
					Ţ.			-							
	data_id	channel_id	dataset_id	energy_min	energy_max	cross_section	stat_error	syst_error	1			data_id1	data_id2 c	mat_type	value
0	data_id 7403	channel_id	dataset_ic 199	energy_min 1.07	energy_max	cross_section 0.093	stat_error 0.045	syst_error 0.0040	1		0	data_id1	data_id2 c	mat_type stat	value 0.019321
0	data_id 7403 7404	channel_id 1	dataset_id 199 199	energy_mi 1.07 1.11	energy_max 1.075 1.119	cross_section 0.893 0.848	stat_error 8.045 8.029	syst_error 0.0040 0.0030]		0	data_id1 14 14	data_id2 cm 14 15	mat_type stat stat	value 0.019321 0.080080
0 1 2	data_id 7403 7404 7405	channel_id 1 1	dataset_id 199 199	energy_min 1.07 1.11 1.28	energy_max 1.075 1.119 1.208	cross_section 0.893 0.848 0.868	stat_error 0.045 0.029 0.026	syst_error 0.0040 0.0030 0.0020]		0 1 2	data_id1 14 14	data_id2 c 14 15 16	mat_type stat stat stat	value 0.019321 0.000000 0.000000
0 1 2 3	data_id 7403 7404 7405 7406	channel_id 1 1 1	dataset_id 199 199 199 199	energy_min 1.07 1.11 1.20 1.28	energy_max 1.075 1.119 1.200 1.284	cross_section 0.093 0.848 0.868 0.868	stat_error 8.845 8.829 8.826 8.826 8.821	syst_error 0.8840 0.8830 0.8020 0.8020]		0 1 2 3	data_id1 14 14 14	data_id2 c 14 15 16 17	mat_type stat stat stat stat	value 0.019321 0.000000 0.000000 0.000000
0 1 2 3 4	data_id 7403 7484 7405 7406 7406 7407	channel_id 1 1 1 1 1	dataset_ic 199 199 199 199	energy_mi 1.07 1.11 1.20 1.28 1.35	energy_max 1.075 1.119 1.200 1.284 1.353	cross_section 0.093 0.848 0.868 0.858 0.858	stat_error 8.845 8.829 8.826 8.821 8.821 8.819	syst_error 0.8040 0.8030 0.8020 0.8020 0.8020 0.8010			0 1 2 3 4	data_id1 14 14 14 14 14	data_id2 c 14 15 16 17 18	mat_type stat stat stat stat stat stat	value 0.019321 0.000000 0.000000 0.000000 0.000000
0 1 2 3 4	data_id 7403 7405 7405 7406 7407	channel_id 1 1 1 1	dataset_ic 199 199 199 199 199	energy_mi 1.07 1.11 1.20 1.28 1.35	energy_max 1.075 1.119 1.208 1.284 1.353	cross_section 0.873 0.848 0.858 0.856 0.856 0.853 	stat_error 0.045 0.029 0.026 0.021 0.019 	syst_error 0.0040 0.0030 0.0020 0.0020 0.0010			0 1 2 3 4	data_id1 14 14 14 14 14	data_id2 c 14 15 16 17 18	mat_type stat stat stat stat stat	value 0.019321 0.000000 0.000000 0.000000 0.000000
0 1 2 3 4 	data_id 7403 7404 7405 7406 7406 7407 472	channel_id 1 1 1 1 99	dataset_id 199 195 195 199 199 199	energy_min 1.07 1.111 1.20 1.28 1.35 9.51	energy_max 1.075 1.119 1.208 1.284 1.353 9.518	cross_section 0.893 0.848 0.860 0.850 0.850 0.850 0.923 3.730	stat_error 0.045 0.029 0.026 0.021 0.019 0.160	syst_error 8.8646 8.8636 8.8020 8.8020 8.8020 8.8020 8.8020 8.2886			0 1 2 3 4	data_id1 14 14 14 14 14 14	data_id2 c 14 15 16 17 18 10743	mat_type stat stat stat stat stat stat	value 0.019321 0.000000 0.000000 0.000000 0.000000 0.000000
0 1 2 3 4 9983	data_id 7403 7404 7405 7406 7406 7407 472 472	channel_id 1 1 1 1 1 99 99	dataset_id 199 199 199 199 199 14	energy_nii 1.07 1.11 1.28 1.35 9.51 10.34	energy_max 1.075 1.119 1.204 1.284 1.353 9.518 10.528	cross_section 0.843 0.848 0.866 0.866 0.856 0.853 3.738 3.540	stat_error 8.845 8.829 8.826 8.826 8.821 8.819 8.168 8.858	syst_error 8.8640 8.8030 8.8020 8.8020 8.8020 8.8010 8.2000 8.5310			0 1 2 3 4 11 11	data_id1 14 14 14 14 14 14 14 14 14 74443 10742 74444 10742	data_id2 ci 14 15 16 17 18 18743 18743	mat_type stat stat stat stat stat stat stat syst	value 0.019321 0.000000 0.000000 0.000000 0.000000 0.000000
0 1 2 3 4 9983 9988	data_id 7403 7404 7405 7406 7407 472 472 474 475	channel_id 1 1 1 1 1 1 99 99 99	dataset_id 199 199 199 199 199 199 199 194 14	energy_min 1.07 1.11 1.28 1.35 9.51 10.34 10.58	energy_max 1.075 1.119 1.208 1.284 1.353 9.518 9.10.658 9.11.000	cross_section 0.843 0.848 0.866 0.856 0.856 0.856 0.3738 3.546 3.856	stat_error 0.045 0.029 0.026 0.021 0.019 0.160 0.050 0.050	syst_error 0.8040 0.8030 0.8020 0.8020 0.8010 0.2500 0.5775			0 1 2 3 4 11 11 11	data_id1 14 14 14 14 14 74443 18742 74445 18743	data_id2 cr 14 15 16 17 18 18743 18744 18744	mat_type stat stat stat stat syst syst	value 8.019321 8.080080 8.080808 8.080808 8.080808 8.080860 8.0808667 8.0808647
8 1 2 3 4 9983 9984 9984 9984 9984	data_id 7403 7404 7405 7406 7407 4740 474 472 474 475 476	channel_id 1 1 1 1 1 1 99 99 99 99 99	dataset_id 199 195 199 199 199 14 16 16 17	energy_min 1.07 1.11 1.20 1.28 1.35 9.51 10.34 10.58 9.40	energy_max 1.075 1.119 1.200 1.280 1.353 9.510 10.520 0.11.690 0.1200 0.1200 0.1200 0.1200 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.005	cross_section 0.003 0.048 0.050 0.055 0.023 3.730 3.540 3.850 3.850 3.850	stat_error 8.045 8.829 9.026 8.021 0.019 8.160 8.055 8.055 8.256	syst_error 8.8640 8.8030 8.8020 8.8610 8.2530 8.5310 8.5735 8.4200			0 1 2 3 4 11 11 11 11	data_id1 14 14 14 14 14 14 14 14 14 16 74443 18742 74444 18743 74446 18743 74446 18743	data_id2 c 14 15 16 17 18 10743 10743 10743 10743 10744	mat_type stat stat stat stat stat syst syst syst syst	value 0.019321 0.000000 0.000000 0.000000 0.000000 0.000000
8 1 2 3 4 998 998 998 998 9999	data_id 7403 7404 7405 7406 7407 472 472 472 476 476 476 476 477	channel_id 1 1 1 1 99 99 99 99 99	dataset_id 199 199 199 199 149 16 16 17 17	energy_mi 1.07 1.11 1.28 1.28 1.35 9.51 10.34 10.58 9.40 9.98	energy_max 1.075 1.129 1.284 1.353 9.538 9.538 9.538 9.5488 9.5488 9.5488 9.	cross_section 0.893 0.848 0.868 0.868 0.868 0.868 0.858 3.540 3.850 3.850 3.860 3.860 3.800	stat_error 0.045 0.022 0.026 0.021 0.019 0.050 0.050 0.050 0.250 0.360	syst_error 0.0640 0.0620 0.0620 0.0620 0.0620 0.0620 0.0620 0.05310 0.5775 0.4200 0.5400			0 1 2 3 4 11 11 11 11 11 11	data_id1 14 14 14 14 14 14 14 14 14 14 16 17 16 17 16 16 17 14 16 17 14 16 16 17 14 16 16 17 16 16 16 16 16 16 16 16 16 16 16 16 16	data_id2 ci 14 15 16 17 18 18743 18744 18744 18744 18744	mat_type stat stat stat stat stat syst syst syst	value 8.819321 8.080806 8.080808 8.080808 8.080808 8.080808 8.0808067 8.080845 8.080859

 $\mathsf{Channels} \to \mathsf{Datasets} \to \mathsf{Data} \to \mathsf{Covariances}$

- Data are then processed according to channel and dataset flags.
- Future Aim: This data and the results of the following routines will be publicly accessible via a to-be-built interface.

Bare Cross Sections

• Cross sections must be *bare*: *inclusive* of final state radiation (FSR) and *exclusive* of vacuum polarisation (VP).

- VP corrections are included in all channels for required datasets. Some datasets require redressing.
- FSR indistinguishable from hadronic insertion so must be included.
- Future Aim: FSR beyond $\pi^+\pi^-$ channel. Refinements to VP routine.

Clustering and Fitting

- Different experiments have different binnings and measure cross sections over different energy ranges.
- Dynamic clustering routine: effectively rebin the data with fitted bin width parameter.

- Typical weighted average suffers from d'Agostini bias (due to correlations) iterative fit procedure.
- Future Aim: Spline interpolation of data to potentially avoid clustering/fitting and better describe resonance lineshapes.

Final Combination

- Not all final states measured supplement with isospin class estimation.
- Some overlap between final states avoid double counting.
- Sum of non-overlapping clustered and fitted bare cross section data:

$$a_{\mu}^{HVP}[KNT19] = \frac{1}{4\pi^3} \int_{s_{th}}^{\infty} ds \left(\sigma_{had}^0\left(s\right) K\left(s\right)\right) = (692.78 \pm 2.42) \times 10^{-10}$$

 Future Aim: An accurate and precise dispersive calculation, taking account of all available data (a^{HVP}_μ[KNTW25?]).

Motivation Situation and Outlook

Tensions

- Particularly in the all-important $\pi^+\pi^$ channel, there are tensions between datasets
- Present KLOE-BaBar method of including the difference as an additional systematic insufficient when CMD-3 must also be considered - precision becomes unworkably large.
- Massive community work to understand $\pi^+\pi^$ channel tensions and dispersive-lattice tensions.

Investigation

• Massive community work to understand $\pi^+\pi^-$ channel tensions and dispersive-lattice tensions.

Suggestion	Response
There is something wrong with the CMD-3 data.	The cross section data were interrogated for nearly two years between preprint and publication. No faults were identified.
The old data are incorrect since they disagree with CMD-3/lattice results.	There is presently no evidence to support this. Despite other (smaller) tensions, results were stable for > 20 years.
The KLOE (and BES-III) radiative corrections rely on a faulty Monte Carlo.	Based on a BaBar study of additional radiation. Comparison to other generators reveals no significant differences.
Data from hadronic tau decays should be re-included.	Data were not included previously due to limited understanding of isospin-breaking corrections. This has not (yet) changed.
"Consistent" low energy dispersive data can supplement the lattice long distance.	No substantial tensions at low energies. Overlooks the existing tensions in the dispersive data and between methods.

• Outlook: We do not know why there are tensions. This is a challenge that needs meeting...

イロン イ団 とく ヨン イヨン

æ

Blinding

- The new KNTW analysis will be *blinded* c.f. Muon g 2: blinding for data-driven hadronic vacuum polarization; A. Keshavarzi, D. Nomura, T. Teubner and A. Wright (arXiv:2409.02827v1).
- Important to blind as all of the above will be re-examined and (hopefully) improved upon and we do not want to bias our results.
- Blinding will occur using the modified integral:

$$\begin{aligned} a_{\mu}^{HVP} &= \frac{1}{4\pi^3} \int_{s_{th}}^{\infty} ds \left(\sigma_{had}^0 \left(s \right) K \left(s \right) B \left(s \right) \right) \\ B \left(s \right) &= a \cdot b \cdot \left(s + s_0 \right)^c \end{aligned}$$

where the sign a, scale b, offset s_0 and power c are random variables KNTW do not hold the blinding seeds for.

- Two stage blinding:
 - Full Blinding: Channel numbers blinded. Each channel has a different a, b, s_0 and c.
 - Relative Unblinding: Channel numbers known. Universal a, b, s_0 and c.

イロト イボト イヨト イヨト

General Outlook

- Expect the final results of Fermilab g 2 spring 2025, but other experiments set to start in the next few years.
- New $\pi^+\pi^-$ measurements expected from the major collaborations 2025-26.
- Should help improve our understanding of the dispersive calculation, with the aim of understanding the discrepancies.

Summary

- The HVP contribution to muon g-2 can be calculated using $e^+e^- \rightarrow hadrons$ data.
- Non-trivial processing is required.
- Tensions exist that must be resolved to properly understand the muon g-2 anomaly, and potentially search for new physics.

イロト 不得 トイヨト イヨト