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A problem

Write down all anomaly-free representations of u(1) for
four-dimensional spacetime fermions.

Equivalently: List all permissible sets of charges (Q1, . . . ,Qn) ∈ Zn

of n Weyl fermions in four dimensions.
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u(1) anomalies

Anomaly =
∑n

i=1Q
3
i Anomaly =

∑n
i=1Qi
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A harder problem

Write down all anomaly-free representations of an arbitrary gauge
Lie algebra for four-dimensional spacetime fermions.

Concession: Consider only irreducible representations.
Irreps ⇒ Only need to worry about su(n) for n ≥ 3.
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su(n) irreps

Dynkin labels: (m1, . . . ,mn−1) ∈ Zn−1
≥0 .

Example: (1, 0, 1) is adjoint rep of su(4).
(q1, . . . , qn−1) := (m1 + 1, . . . ,mn−1 + 1).
Dual rep of (q1, . . . , qn−1) is (qn−1, . . . , q1) and has negative the
anomaly.
(Pseudo-)Real irreps are self-dual and so anomaly-free.
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su(n) anomalies

Banks, Georgi ’76: Anomaly := An =
∑

aijkqiqjqk .

Which irreps are anomaly-free (ie. have An = 0)?
Partial answer: All (pseudo-)real irreps.
su(3) : A3 = (q1 − q2)(q1 + 2q2)(2q1 + q2)
⇒ Only (pseudo-)real irreps of the form (a, a).
su(4) : A4 = (q1 − q3)(q1 + q3)(q1 + 2q2 + q3)
⇒ Only (pseudo-)real irreps of the form (a, b, a).

6 / 20



su(n) anomalies

su(5) : A5 = 4q31 + 9q21q2 + 3q1q
2
2 + 2q32 + 6q21q3 + 4q1q2q3 +

4q22q3 − 2q1q
2
3 − 4q2q

2
3 − 2q33 + 3q21q4 + 2q1q2q4 + 2q22q4 −

2q1q3q4 − 4q2q3q4 − 3q23q4 − 3q1q
2
4 − 6q2q

2
4 − 9q3q

2
4 − 4q34 .
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su(5) has some complex anomaly-free irreps

Eichten, Kang, Koh ’82: Dimension below 4× 109

(m1,m2,m3,m4) Dimension

(0, 7, 3, 3) 1× 106

(1, 8, 1, 5) 3× 106

(7, 7, 15, 1) 1× 109
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Okubo’s new variables

Okubo ’77: Transform the n − 1 positive integers q1, . . . , qn−1 to
the n rationals σ1, . . . , σn according to

σi :=
1

n

(
−

i−1∑
k=1

kqk +
n−1∑
k=i

(n − k)qk

)
.

Example: (Pseudo-)Real irreps of su(5) have
(σ1, . . . , σ5) = (a, b, 0,−b,−a) with a > b > 0.
Constraints:

▶
∑n

i=1 σi = 0.

▶ σ1 > σ2 > · · · > σn (because σi − σi+1 = qi ).

Anomaly: An ∝
∑n

i=1 σ
3
i .
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The su(n) anomaly cancellation conditions
are almost the same as the u(1) ones
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Anomaly-free irreps of su(5)

For n = 5, we have to solve a homogeneous cubic equation in four
variables, writing σ5 = −(σ1 + · · ·+ σ4),

4∑
i=1

σ3
i −

(
4∑

i=1

σi

)3

= 0.

In kP3 (k ∈ {C,R,Q}), this defines a projective variety called the
Clebsch diagonal cubic surface.

▶ “Projective” means that given one solution (σ1, . . . , σ5),
infinitely many others are found by scaling.

▶ “Variety” means that we have the zero locus of a polynomial,
and that a fake algebraic geometer such as myself should not
say much more lest Zariski starts turning in his grave.
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27 lines

Fact 1: Every smooth cubic surface has 27 lines over C.
Fact 2: The Clebsch diagonal cubic surface is the only one with 27
lines over R.
Fact 3: In the σi variables, 15 of these lines exist over Q.
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Rational lines on the Clebsch cubic
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The method of secants in one minute

1. Pick two skew rational lines on the Clebsch cubic.

2. Draw all secants between them.

3. Get all rational points from intersections between secants and
Clebsch cubic.
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The method of secants in action
With homogeneous coordinates [σ1 : · · · : σ5],
1. Two skew rational lines on the Clebsch cubic surface are

L1 = [k1 : k2 : 0 : −k2 : −k1] (the “palindromic” line) and
L2 = [0 : l1 : l2 : −l2 : −l1].

2. If p1 ∈ L1 and p2 ∈ L2, then the projective line through them
is L3 = α1p1 + α2p2.

3. A point p3 ∈ L3 lies on the Clebsch cubic if

5∑
i=1

p33i = 0 ⇔
5∑

i=1

α1α2(α1p
2
1ip2i + α2p1ip

2
2i ) = 0.

4. “Generically”

[α1 : α2] =

[
5∑

i=1

p1ip
2
2i : −

5∑
i=1

p21ip2i

]
.
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Caveat?

How about the pesky condition σ1 > · · · > σ5?
Answer: S5 symmetry, plus the fortunate fact that we essentially
never run into trouble.
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The solution for n = 5
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Eichten, Kang, Koh revisited

A5 =
∑

aijkqiqjqk

(m1,m2,m3,m4) (q1, q2, q3, q4) Dimension

(0, 7, 3, 3) (1, 8, 4, 4) 1× 106

(1, 8, 1, 5) (2, 9, 2, 6) 3× 106

(7, 7, 15, 1) (8, 8, 16, 2) 1× 109

(0, 17, 12, 5) (1, 18, 13, 6) 2.5× 109

(8, 16, 0, 15) (9, 17, 1, 16) 2.7× 109

(3, 17, 3, 11) (4, 18, 4, 12) 3× 109
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Concluding remarks

▶ This all generalizes to higher n (even n are slightly annoying).

▶ Ongoing projects: Reducible representations, other abelian
algebras.
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Thank you for listening!

20 / 20


