Varieties of four-dimensional gauge theories

Khoi Le Nguyen Nguyen

DAMTP, University of Cambridge

YTF, 19 Dec 2024 Based on 2409.15430 with Ben Gripaios

A problem

Write down all anomaly-free representations of $u(1)$ for four-dimensional spacetime fermions.

A problem

Write down all anomaly-free representations of $u(1)$ for four-dimensional spacetime fermions. Equivalently: List all permissible sets of charges $(Q_1,\ldots,Q_n)\in\mathbb{Z}^n$ of n Weyl fermions in four dimensions.

$u(1)$ anomalies

Anomaly $= \sum_{i=1}^n Q_i^3$

 i^3 Anomaly = $\sum_{i=1}^n Q_i$

Write down all anomaly-free representations of an arbitrary gauge Lie algebra for four-dimensional spacetime fermions.

Write down all anomaly-free representations of an arbitrary gauge Lie algebra for four-dimensional spacetime fermions. Concession: Consider only irreducible representations.

Write down all anomaly-free representations of an arbitrary gauge Lie algebra for four-dimensional spacetime fermions. Concession: Consider only irreducible representations. Irreps \Rightarrow Only need to worry about $\mathfrak{su}(n)$ for $n \geq 3$.

$\mathfrak{su}(n)$ irreps

Dynkin labels: $(m_1, \ldots, m_{n-1}) \in \mathbb{Z}_{\geq 0}^{n-1}$. Example: $(1, 0, 1)$ is adjoint rep of $\overline{\mathfrak{su}}(4)$. $(q_1, \ldots, q_{n-1}) := (m_1 + 1, \ldots, m_{n-1} + 1).$ Dual rep of (q_1, \ldots, q_{n-1}) is (q_{n-1}, \ldots, q_1) and has negative the anomaly.

(Pseudo-)Real irreps are self-dual and so anomaly-free.

$\mathfrak{su}(n)$ anomalies

Banks, Georgi '76: Anomaly : $=A_n=\sum a_{ijk}q_iq_jq_k.$

Which irreps are anomaly-free (ie. have $A_n = 0$)? Partial answer: All (pseudo-)real irreps. $\mathfrak{su}(3)$: $A_3 = (q_1 - q_2)(q_1 + 2q_2)(2q_1 + q_2)$ \Rightarrow Only (pseudo-)real irreps of the form (a, a) . $\mathfrak{su}(4)$: $A_4 = (q_1 - q_3)(q_1 + q_3)(q_1 + 2q_2 + q_3)$ \Rightarrow Only (pseudo-)real irreps of the form (a, b, a) .

$\mathfrak{su}(n)$ anomalies

$\mathfrak{su}(5)$: $A_5 = 4q_1^3 + 9q_1^2q_2 + 3q_1q_2^2 + 2q_2^3 + 6q_1^2q_3 + 4q_1q_2q_3 +$ $4q_2^2q_3 - 2q_1q_3^2 - 4q_2q_3^2 - 2q_3^3 + 3q_1^2q_4 + 2q_1q_2q_4 + 2q_2^2q_4 2q_1q_3q_4 - 4q_2q_3q_4 - 3q_3^2q_4 - 3q_1q_4^2 - 6q_2q_4^2 - 9q_3q_4^2 - 4q_4^3.$

su(5) has some complex anomaly-free irreps

Eichten, Kang, Koh '82: Dimension below 4×10^9

Okubo's new variables

Okubo '77: Transform the $n-1$ positive integers q_1, \ldots, q_{n-1} to the *n* rationals $\sigma_1, \ldots, \sigma_n$ according to

$$
\sigma_i := \frac{1}{n} \left(- \sum_{k=1}^{i-1} k q_k + \sum_{k=i}^{n-1} (n-k) q_k \right).
$$

Okubo's new variables

Okubo '77: Transform the $n-1$ positive integers q_1, \ldots, q_{n-1} to the *n* rationals $\sigma_1, \ldots, \sigma_n$ according to

$$
\sigma_i := \frac{1}{n} \left(- \sum_{k=1}^{i-1} k q_k + \sum_{k=i}^{n-1} (n-k) q_k \right).
$$

Example: (Pseudo-)Real irreps of $\mathfrak{su}(5)$ have $(\sigma_1, \ldots, \sigma_5) = (a, b, 0, -b, -a)$ with $a > b > 0$.

Okubo's new variables

Okubo '77: Transform the $n-1$ positive integers q_1, \ldots, q_{n-1} to the *n* rationals $\sigma_1, \ldots, \sigma_n$ according to

$$
\sigma_i := \frac{1}{n} \left(- \sum_{k=1}^{i-1} k q_k + \sum_{k=i}^{n-1} (n-k) q_k \right).
$$

Example: (Pseudo-)Real irreps of su(5) have $(\sigma_1, \ldots, \sigma_5) = (a, b, 0, -b, -a)$ with $a > b > 0$. Constraints:

 $\sum_{i=1}^n \sigma_i = 0.$

 \triangleright $\sigma_1 > \sigma_2 > \cdots > \sigma_n$ (because $\sigma_i - \sigma_{i+1} = q_i$). Anomaly: $A_n \propto \sum_{i=1}^n \sigma_i^3$.

The $\mathfrak{su}(n)$ anomaly cancellation conditions are almost the same as the $u(1)$ ones

Khoi Le Nguyen Nguyen

DAMTP, University of Cambridge

YTF, 19 Dec 2024 Based on 2409.15430 with Ben Gripaios

Anomaly-free irreps of su(5)

For $n = 5$, we have to solve a homogeneous cubic equation in four variables, writing $\sigma_5 = -(\sigma_1 + \cdots + \sigma_4)$,

$$
\sum_{i=1}^4 \sigma_i^3 - \left(\sum_{i=1}^4 \sigma_i\right)^3 = 0.
$$

In \mathbb{RP}^3 $(\mathbb{k} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\})$, this defines a projective variety called the Clebsch diagonal cubic surface.

Anomaly-free irreps of su(5)

For $n = 5$, we have to solve a homogeneous cubic equation in four variables, writing $\sigma_5 = -(\sigma_1 + \cdots + \sigma_4)$,

$$
\sum_{i=1}^4 \sigma_i^3 - \left(\sum_{i=1}^4 \sigma_i\right)^3 = 0.
$$

In \mathbb{RP}^3 $(\mathbb{k} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\})$, this defines a projective variety called the Clebsch diagonal cubic surface.

• "Projective" means that given one solution $(\sigma_1, \ldots, \sigma_5)$, infinitely many others are found by scaling.

Anomaly-free irreps of su(5)

For $n = 5$, we have to solve a homogeneous cubic equation in four variables, writing $\sigma_5 = -(\sigma_1 + \cdots + \sigma_4)$,

$$
\sum_{i=1}^4 \sigma_i^3 - \left(\sum_{i=1}^4 \sigma_i\right)^3 = 0.
$$

In \mathbb{RP}^3 $(\mathbb{k} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\})$, this defines a projective variety called the Clebsch diagonal cubic surface.

- **•** "Projective" means that given one solution $(\sigma_1, \ldots, \sigma_5)$, infinitely many others are found by scaling.
- ▶ "Variety" means that we have the zero locus of a polynomial, and that a fake algebraic geometer such as myself should not say much more lest Zariski starts turning in his grave.
- Fact 1: Every smooth cubic surface has 27 lines over C. Fact 2: The Clebsch diagonal cubic surface is the only one with 27 lines over R.
- Fact 3: In the σ_i variables, 15 of these lines exist over $\mathbb O$.

Rational lines on the Clebsch cubic

The method of secants in one minute

- 1. Pick two skew rational lines on the Clebsch cubic.
- 2. Draw all secants between them.
- 3. Get all rational points from intersections between secants and Clebsch cubic.

The method of secants in action

With homogeneous coordinates $[\sigma_1 : \cdots : \sigma_5]$,

- 1. Two skew rational lines on the Clebsch cubic surface are $L_1 = [k_1 : k_2 : 0 : -k_2 : -k_1]$ (the "palindromic" line) and $L_2 = [0 : h : b : -b : -h].$
- 2. If $p_1 \in L_1$ and $p_2 \in L_2$, then the projective line through them is $L_3 = \alpha_1 p_1 + \alpha_2 p_2$.
- 3. A point $p_3 \in L_3$ lies on the Clebsch cubic if

$$
\sum_{i=1}^{5} p_{3i}^{3} = 0 \Leftrightarrow \sum_{i=1}^{5} \alpha_{1} \alpha_{2} (\alpha_{1} p_{1i}^{2} p_{2i} + \alpha_{2} p_{1i} p_{2i}^{2}) = 0.
$$

4. "Generically"

$$
[\alpha_1 : \alpha_2] = \left[\sum_{i=1}^5 p_{1i} p_{2i}^2 : - \sum_{i=1}^5 p_{1i}^2 p_{2i} \right].
$$

How about the pesky condition $\sigma_1 > \cdots > \sigma_5$? Answer: S_5 symmetry, plus the fortunate fact that we essentially never run into trouble.

The solution for $n = 5$

Eichten, Kang, Koh revisited

$$
A_5=\sum a_{ijk}q_iq_jq_k
$$

Concluding remarks

- \blacktriangleright This all generalizes to higher n (even n are slightly annoying).
- ▶ Ongoing projects: Reducible representations, other abelian algebras.

Thank you for listening!