

Contribution ID: 12 Type: not specified

Axion-photon conversion from Neutron star populations

Thursday, 19 December 2024 12:00 (30 minutes)

The QCD axion, a favourable candidate for dark matter and a solution to the strong CP problem, can efficiently convert into photons in the presence of high magnetic fields. Neutron stars harbour high magnetic fields ($\approx 10^{12}$ G) and serve as powerful probes to search for axion-photon conversion via observation of radio emission at the axion frequency $\hbar\omega=m_ac^2$, with m_a the axion mass. The non-observation of signals currently places upper limits on the axion-photon coupling. Recently, much discussion has arisen about the efficient modelling of the neutron star population in the galaxy and a comparison between a 'single star observation'vs. a 'population'type observational approach. In our current work, I (with my collaborators) tackled these issues and used PsrPopPy, a Python-based package for modelling neutron stars in the galaxy and estimated the axion-photon signal from the galactic population. We provide the pros and cons of conducting a population analysis over a single-star analysis both for existing constraints and future MeerKAT and SKA observations.

Primary author: BHURA, Utkarsh (King's College London)

Presenter: BHURA, Utkarsh (King's College London)

Session Classification: Axions and Astroparticle Phenomenology