

THE UNIVERSITY of EDINBURGH

Genealogical Constraints

Maria Polackova

Based on [arXiv:2406.05943](https://arxiv.org/abs/2406.05943)

In collaboration with Hofie Hannesdottir, Luke Lippstreu, and Andrew McLeod

YTF 2024 Durham

Feynman integrals are hard!

- Computing scattering amplitudes to higher loop orders is hard in general
- Computing them explicitly requires sophisticated methods (iterated integrals)
- Naturally, we seek for different methods using basic axioms

unitarity

Lorentz invariance

analyticity

and its bootstrap image

What types of bootstrap do we know?

• S-matrix bootstrap:

- Analyticity, unitarity, Lorentz invariance, locality, crossing symmetry
- Choose EFT and fix coupling constants based on above principles, nonperturbative QFTs

What types of bootstrap do we know?

• S-matrix bootstrap:

- Analyticity, unitarity, Lorentz invariance, locality, crossing symmetry
- Choose EFT and fix coupling constants based on above principles, nonperturbative QFTs
- Conformal bootstrap:
	- Studies scale invariant critical points phase transitions, nonperturbative QFTs, numerical bootstrap

What types of bootstrap do we know?

• S-matrix bootstrap:

- Analyticity, unitarity, Lorentz invariance, locality, crossing symmetry
- Choose EFT and fix coupling constants based on above principles, nonperturbative QFTs
- Conformal bootstrap:
	- Studies scale invariant critical points phase transitions, nonperturbative QFTs, numerical bootstrap
- Landau bootstrap
	- Use analyticity to derive constraints on perturbative QFT

Feynman Integral

$$
\text{Momentum-space} \qquad \qquad I(p_i) = \frac{(-1)^E}{(i\pi)^{LD/2}} \int \frac{\mathrm{d}^D k_1 \cdots \mathrm{d}^D k_L}{(q_1^2 - m_1^2 - i\epsilon) \cdots (q_E^2 - m_E^2 - i\epsilon)},
$$

Feynman Integral

Momentum-space representation

\n
$$
I(p_i) = \frac{(-1)^E}{(i\pi)^{LD/2}} \int \frac{d^D k_1 \cdots d^D k_L}{(q_1^2 - m_1^2 - i\epsilon) \cdots (q_E^2 - m_E^2 - i\epsilon)},
$$
\n
$$
\frac{1}{\prod_{i=1}^E A_i} = \Gamma(d) \int_0^\infty \frac{1}{\text{GL}(1)} \frac{d\alpha_1 \cdots d\alpha_E}{(\sum_{i=1}^E \alpha_i A_i)^E},
$$
\nFeynman parametrisation

\n
$$
I(p_i) = \Gamma(d) \lim_{\epsilon \to 0^+} \int_0^\infty \frac{d\alpha_1 \cdots d\alpha_E}{\text{GL}(1)} \frac{U^{d-D/2}}{(-F - i\epsilon)^d},
$$

Feynman Integral

Momentum-space representation

\n
$$
I(p_i) = \frac{(-1)^E}{(i\pi)^{LD/2}} \int \frac{d^D k_1 \cdots d^D k_L}{(q_1^2 - m_1^2 - i\epsilon) \cdots (q_E^2 - m_E^2 - i\epsilon)},
$$
\n
$$
\frac{1}{\prod_{i=1}^E A_i} = \Gamma(d) \int_0^\infty \frac{1}{\text{GL}(1)} \frac{d\alpha_1 \cdots d\alpha_E}{(\sum_{i=1}^E \alpha_i A_i)^E},
$$
\nAdvantages of Feynman parametrisation:

\nAs follows:

\nAbvantages of Feynman parametrisation

\nExplicity Lorentz invariant to the binomial distribution

\nExponential to the binematic dependence in **F** polynomial representation

\nExponential to $I(p_i) = \Gamma(d) \lim_{\epsilon \to 0^+} \int_0^\infty \frac{d\alpha_1 \cdots d\alpha_E}{\text{GL}(1)} \frac{U^{d-D/2}}{(-F - i\epsilon)^d},$

Choice of projection condition, e.g., $\delta(1 - \sum_i \alpha_i)$

In Feynman parametrisation (FP) space we have two types of singularities:

$$
I(p_i) = \Gamma(d) \lim_{\varepsilon \to 0^+} \int_0^\infty \frac{d\alpha_1 \cdots d\alpha_E}{\mathrm{GL}(1)} \frac{U^{d-D/2}}{(-F - i\varepsilon)^d} \, ,
$$

- a) Pinch singularity
- b) End-point singularity

In Feynman parametrisation (FP) space we have two types of singularities:

$$
I(p_i) = \Gamma(d) \lim_{\varepsilon \to 0^+} \int_0^\infty \frac{\mathrm{d} \alpha_1 \cdots \mathrm{d} \alpha_E}{\mathrm{GL}(1)} \frac{U^{d-D/2}}{(-F - i\varepsilon)^d} \,,
$$

- a) Pinch singularity
- b) End-point singularity

$$
\alpha_i = 0 \text{ or } \frac{\partial F}{\partial \alpha_i} = 0 \text{ for } i = 1, ..., E
$$

$$
F = (\alpha_i - r_1)(\alpha_i - r_2) \dots (\alpha_i - r_n)
$$

In Feynman parametrisation (FP) space we have two types of singularities:

$$
I(p_i) = \Gamma(d) \lim_{\varepsilon \to 0^+} \int_0^\infty \frac{\mathrm{d} \alpha_1 \cdots \mathrm{d} \alpha_E}{\mathrm{GL}(1)} \frac{U^{d-D/2}}{(-F - i\varepsilon)^d} \,,
$$

- a) Pinch singularity
- b) End-point singularity

$$
\alpha_i = 0 \text{ or } \frac{\partial F}{\partial \alpha_i} = 0 \text{ for } i = 1, ..., E
$$

$$
F = (\alpha_i - r_1)(\alpha_i - r_2) \dots (\alpha_i - r_n)
$$

in momentum space:

$$
\alpha_i(q_i^2 - m_i^2) = 0,
$$

$$
\sum_{i \in a} \pm \alpha_i q_i^{\mu} = 0,
$$

In Feynman parametrisation (FP) space we have two types of singularities:

$$
I(p_i)=\Gamma(d)\lim_{\varepsilon\to 0^+}\int_0^\infty\frac{\mathrm{d}\alpha_1\cdots\mathrm{d}\alpha_E}{\mathrm{GL}(1)}\frac{U^{d-D/2}}{(-F-i\varepsilon)^d}\,,
$$

- a) Pinch singularity
- b) End-point singularity

$$
\alpha_i = 0 \text{ or } \frac{\partial F}{\partial \alpha_i} = 0 \text{ for } i = 1, ..., E
$$

$$
F = (\alpha_i - r_1)(\alpha_i - r_2) \dots (\alpha_i - r_n)
$$

in momentum space:

In Feynman parametrisation (FP) space we have two types of singularities:

$$
I(p_i)=\Gamma(d)\lim_{\varepsilon\to 0^+}\int_0^\infty\frac{\mathrm{d}\alpha_1\cdots\mathrm{d}\alpha_E}{\mathrm{GL}(1)}\frac{U^{d-D/2}}{(-F-i\varepsilon)^d}\,,
$$

- a) Pinch singularity
- b) End-point singularity

$$
\alpha_i = 0 \text{ or } \frac{\partial F}{\partial \alpha_i} = 0 \text{ for } i = 1, ..., E
$$

$$
F = (\alpha_i - r_1)(\alpha_i - r_2) \dots (\alpha_i - r_n)
$$

a) $Disc_sI = ?$

Computing discontinuities – as many as we can!

a) $Disc_sI = ?$

Computing discontinuities – as many as we can!

a) $Disc_sI = ?$

Computing discontinuities – as many as we can!

a) $Disc_sI = ?$

Computing discontinuities – as many as we can!

b) ... Disc_{s₂} Disc_{s₁}
$$
I = ?
$$

Some discontinuities can be accessed only after taking first $\mathrm{Disc}_{\scriptstyle{S_1}},$ some of them are not allowed to be accessed after Disc_{S_1}

a) $Disc_sI = ?$

Computing discontinuities – as many as we can!

b) ... $Disc_{s_2} Disc_{s_1} I = ?$

Some discontinuities can be accessed only after taking first $\mathrm{Disc}_{\scriptstyle{S_1}},$ some of them are not allowed to be accessed after $Disc_{S_1}$

a) $Disc_sI = ?$

Computing discontinuities – as many as we can!

b) ... $Disc_{s_2} Disc_{s_1} I = ?$

Some discontinuities can be accessed only after taking first $\mathrm{Disc}_{\scriptstyle{S_1}},$ some of them are not allowed to be accessed after $Disc_{S_1}$

Disc rules: Hierarchical constraints

• Once we impose on-shell constraints for $\lambda = 0$, we cannot take them off-shell again

Cutkosky's rules:

Cutkosky (1960)

$$
Disc_{s-(m_2+m_4)^2} I(p_i) \propto \int_0^\infty \frac{d^D k \ \delta(p_2^2 - m_2^2) \delta(p_4^2 - m_4^2)}{(p_1^2 - m_1^2)(p_3^2 - m_3^2)}
$$

Disc rules: Hierarchical constraints

• Once we impose on-shell constraints for $\lambda = 0$, we cannot take them off-shell again

Hierarchical principle in practice

• Find all singularities: some endpoint singularities diverge faster than others and we require blow-ups to resolve them

$$
\alpha_i \to \epsilon^{w_i} \alpha_i, \quad \text{with} \quad \epsilon \to 0,
$$

Hierarchical principle in practice

- Find all singularities: some endpoint singularities diverge faster than others and we require blow-ups to resolve them
- Find all solutions to Landau equations for all kinematic singularities - It is hard!

Hierarchical principle in practice

- Find all singularities: some endpoint singularities diverge faster than others and we require blow-ups to resolve them
- Find all solutions to Landau equations for all these singularities - It is hard!
- Therefore, only few examples exist with fully computed hierarchical constraints

Landshoff, Olive, Polkinghorne (1965); Pham (1967); Berghoff, Panzer (2022)

Example: triangle diagram

$$
I(p_i) = \Gamma(d) \lim_{\varepsilon \to 0^+} \int_0^\infty \frac{d\alpha_1 \cdots d\alpha_E}{\mathrm{GL}(1)} \frac{U^{d-D/2}}{(-F - i\varepsilon)^d},
$$

In FP space we can associate cutting edges to deleting
boundaries of the α parameters
Britto (2023)

- Space Y of the integration contour degenerates when $\lambda_i = 0$ occurs Pham (1967)
- This means we can remove some $\alpha_i \dots \alpha_j$ boundaries and then ask if the $\lambda_i = 0$ condition changed the topology of the space $Y_{i...i}$

- Space Y of the integration contour degenerates when $\lambda_i = 0$ occurs Pham (1967)
- This means we can remove some $\alpha_i \dots \alpha_j$ boundaries and then ask if the $\lambda_i = 0$ condition changed the topology of the space $Y_{i...i}$

Space with removed singular loci: $Y = \mathbb{C}^{E-1} \setminus (F = 0 \cup U = 0 \cup_{e=1}^{E} \alpha_e = 0$

- Space Y of the integration contour degenerates when $\lambda_i = 0$ occurs Pham (1967)
- This means we can remove some $\alpha_i \dots \alpha_j$ boundaries and then ask if the $\lambda_i = 0$ condition changed the topology of the space $Y_{i...i}$

Space with removed singular loci: $Y = \mathbb{C}^{E-1} \setminus (F = 0 \cup U = 0 \cup_{e=1}^{E} \alpha_e = 0$

Remove α_e boundaries $Y_{i...j} = \mathbb{C}^{E-1} \setminus (F = 0 \cup U = 0 \cup_{e \notin \{i...j\}} \alpha_e = 0$ from the singular loci:

- Space Y of the integration contour degenerates when $\lambda_i = 0$ occurs Pham (1967)
- This means we can remove some $\alpha_i \dots \alpha_j$ boundaries and then ask if the $\lambda_i = 0$ condition changed the topology of the space $Y_{i...i}$

Space with removed singular loci: $Y = \mathbb{C}^{E-1} \setminus (F = 0 \cup U = 0 \cup_{e=1}^{E} \alpha_e = 0$

Remove α_e boundaries $Y_{i...j} = \mathbb{C}^{E-1} \setminus (F = 0 \cup U = 0 \cup_{e \notin \{i...j\}} \alpha_e = 0$ from the singular loci:

Has $Y_{i...j}|_{\lambda_i=0}$ changed from $Y_{i...j}$?

- This change in the topology is captured by Euler characteristic $\chi(Y)$
- Euler characteristic corresponds to:
	- a) Number of solutions to the equation:

$$
\frac{\mu_1}{\mathcal{F}} \frac{\partial \mathcal{F}}{\partial \alpha_e} + \frac{\mu_2}{\mathcal{U}} \frac{\partial \mathcal{U}}{\partial \alpha_e} + \frac{\nu_e}{\alpha_e} = 0 \quad \text{ for } e \in \{1, 2, \dots, E\} \qquad \text{with (2013)}
$$

- This change in the topology is captured by Euler characteristic $\chi(Y)$
- Euler characteristic corresponds to:
	- a) Number of solutions to the equation:

$$
\frac{\mu_1}{\mathcal{F}} \frac{\partial \mathcal{F}}{\partial \alpha_e} + \frac{\mu_2}{\mathcal{U}} \frac{\partial \mathcal{U}}{\partial \alpha_e} + \frac{\nu_e}{\alpha_e} = 0 \quad \text{ for } e \in \{1, 2, \dots, E\} \qquad \text{with (2013)}
$$

b) Number of master integrals of a given Feynman diagram

Bitoun, Bogner, Klausen, Panzer (2018)

Remove α_e boundaries from the singular loci:

$$
Y_{i\ldots j} = \mathbb{C}^{E-1} \setminus \left(F = 0 \cup U = 0 \cup_{e \notin \{i\ldots j\}} \alpha_e = 0 \right)
$$

$$
\left|\chi\left(Y_{i\dots j}\Big|_{\lambda_i=0}\right)\right| \overset{?}{<} \left|\chi(Y_{i\dots j})\right|
$$

Fevola, Mizera, Telen (2023)

Remove α_e boundaries from the singular loci:

$$
Y_{i...j} = \mathbb{C}^{E-1} \setminus (F = 0 \cup U = 0 \cup_{e \notin \{i...j\}} a_e = 0)
$$

Yes, the space *Y* degenerates and discontinuity w.r.t. λ_i can be non-zero No, the space *Y* does not degenerate and discontinuity w.r.t. λ_i is zero

What we have learnt so far:

- We established cutting edges in Feynman parameter space
- Use Euler characteristics test for a space degeneracy, i.e., "is the discontinuity in λ_i possible?"

What we have learnt so far:

- We established cutting edges in Feynman parameter space
- Use Euler characteristics test for a space degeneracy, i.e., "is the discontinuity in λ_i possible?"
- How do we identify which α_e boundaries remove?

Instead of solving Landau equations, we can use minimal cuts!

Minimal cuts

- Conservative choice of the Landau equations solutions
- Cut the diagram such that kinematic variables in $\lambda_i = 0$ are resolved by the cuts

Minimal cuts

- Conservative choice of the Landau equations solutions
- Cut the diagram such that kinematic variables in $\lambda_i = 0$ are resolved by the cuts

Minimal cuts

- Conservative choice of the Landau equations solutions
- Cut the diagram such that kinematic variables in $\lambda_i = 0$ are resolved by the cuts

 $\lambda = s_{12}$

Minimal cuts

- Conservative choice of the Landau equations solutions
- Cut the diagram such that kinematic variables in $\lambda_i = 0$ are resolved by the cuts

 $\lambda = s_{12}$

Minimal cuts

- Conservative choice of the Landau equations solutions
- Cut the diagram such that kinematic variables in $\lambda_i = 0$ are resolved by the cuts

Minimal cuts

- Conservative choice of the Landau equations solutions
- Cut the diagram such that kinematic variables in $\lambda_i = 0$ are resolved by the cuts

 $\lambda = s_{12}$

 $\lambda = s_{345}$

Minimal cuts

- Conservative choice of the Landau equations solutions
- Cut the diagram such that kinematic variables in $\lambda_i = 0$ are resolved by the cuts

Minimal cuts

- Conservative choice of the Landau equations solutions
- Cut the diagram such that kinematic variables in $\lambda_i = 0$ are resolved by the cuts

 $\lambda = s_{12} - s_{345}$ $\lambda = s_{12}$ $\lambda = s_{345}$

• Minimal cuts are conservative choice, i.e. more propagators can be put on-shell and we could drop more α_i boundaries

We choose to under-constrain the space of the integration contour for our method to be easily implemented

Hierarchical constraints which follow from minimal cuts: Genealogical constraints

Example: 2-mass easy box

Example: 2-mass easy box

Allowed discontinuities by genealogical constraints

Example: 2-mass easy box

Allowed discontinuities by genealogical constraints

All 64 hierarchical constraints of the type $\dots\mathrm{Disc}_{\lambda'}\dots\mathrm{Disc}_{\lambda}\dots I(p_i)=0$

Two-loop examples

156 genealogical constraints

> miss only 31 constraints

Chicherin, Gehrmann, Henn, Lo Presti, Mitev, Wasser (2019)

620 genealogical constraints

> miss only 25 constraints

Abreu, Ita, Moriello, Page, Tschernow, Zeng (2020)

540 genealogical constraints

> miss only 9 constraints

Abreu, Ita, Page, Tschernow (2022)

Two-loop examples Compared to Steinman relations, for double-box diagram
in the middle, we get 305 more constraints on the symbol. in the middle, we get 305 more constraints on the symbol.

156 genealogical constraints

> miss only 31 constraints

Chicherin, Gehrmann, Henn, Lo Presti, Mitev, Wasser (2019)

620 genealogical constraints

> miss only 25 constraints

Abreu, Ita, Moriello, Page, Tschernow, Zeng (2020)

 $\,p_1$ $\,p_2$ p_4 p_{5} $\,p_3$

> 540 genealogical constraints

> > miss only 9 constraints

Abreu, Ita, Page, Tschernow (2022)

Missing constraints

Missing constraints

• The Euler characteristic test cannot tell if sequences of type

$$
\ldots \operatorname{Disc}_{\lambda} \ldots \operatorname{Disc}_{\lambda} \ldots I(p_i) = 0
$$

can happen since no change in topology happens

Missing constraints

• The Euler characteristic test cannot tell if sequences of type

$$
\ldots \operatorname{Disc}_{\lambda} \ldots \operatorname{Disc}_{\lambda} \ldots I(p_i) = 0
$$

can happen since no change in topology happens

• In Steinmann relations

$$
\ldots \mathrm{Disc}_{s_{\,} j} \mathrm{Disc}_{s_{j} k} I(p_i) = 0
$$

these sequences are not allowed as first two discontinuities but could happen further in the sequence of discontinuities.

Euler Characteristic test does not distinguish between these two scenarios

Three-loop example

• Even though we do not know the complete set of kinematic singularities of more complicated diagrams, we can derive some genealogical constraints nevertheless

Three-loop example

• Even though we do not know the complete set of kinematic singularities of more complicated diagrams, we can derive some genealogical constraints nevertheless

Summary

- Genealogical constraints find a rich number of hierarchical constraints on the analytical structure
- Genealogical constraints hold for all orders in dimensional regularisation
- Can be easily derived for any type of massive or massless kinematic configurations
- Further analysis can be conducted focusing on higher power propagators and integrals with numerators

Thank you!