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Feynman integrals are hard!

• Computing scattering amplitudes to higher loop orders is 
hard in general

• Computing them explicitly requires sophisticated methods 
(iterated integrals)

• Naturally, we seek for different methods using basic axioms
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• S-matrix bootstrap:
• Analyticity, unitarity, Lorentz invariance, locality, crossing symmetry
• Choose EFT and fix coupling constants based on above principles, non-

perturbative QFTs

• Conformal bootstrap:
• Studies scale invariant critical points – phase transitions, non-

perturbative QFTs, numerical bootstrap

• Landau bootstrap
• Use analyticity to derive constraints on perturbative QFT
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Feynman Integral

Momentum-space 
representation

Feynman parametrisation 
representation

Choice of projection condition, e.g., 𝛿(1 − σ𝑖 𝛼𝑖) 

Advantages of Feynman parametrisation:
a) Explicitly Lorentz invariant 
b) Kinematic dependence in F polynomial
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Identifying singularities: Landau equations

𝑟𝑒

In Feynman parametrisation (FP) space 
we have two types of singularities:

a) Pinch singularity 
b) End-point singularity 

in momentum space:𝑟1

𝑟2

𝛼𝑒

Landau (1959)
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How to extract these singularities? 

Discs𝐼 ≠ 0

Discs𝐼 = 0

s

Computing discontinuities – 
as many as we can! 

b) … Discs2
Disc𝑠1

𝐼 =?

Some discontinuities can be accessed only after taking first Disc𝑠1
, 

some of them are not allowed to be accessed after Disc𝑠1
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Riemann Sheet 1

Riemann Sheet 2

Riemann Sheet 3

Discs1
𝐼 ≠ 0

s

Discs2
Discs1
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Discs3
𝐼 ≠ 0

Discs3
Discs1

𝐼 = 0



Disc rules: Hierarchical constraints

• Once we impose on-shell constraints for 𝜆 = 0, we cannot take them off-shell 
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2

Cutkosky (1960)

Cutkosky’s rules:
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Bootstrap image

Hierarchical principle in practice

• Find all singularities: some endpoint singularities diverge faster 
than others and we require blow-ups to resolve them

• Find all solutions to Landau equations for all these singularities 
- It is hard!

• Therefore, only few examples exist with fully computed 
hierarchical constraints 

Landshoff, Olive, Polkinghorne (1965); Pham (1967); Berghoff, Panzer (2022) 



Instead: a) rethink on-shell conditions in FP space

In FP space we can associate cutting edges to deleting 
boundaries of the 𝛼 parameters Britto (2023)

Example: triangle diagram

𝛼1, 𝑚1

𝛼2, m2 𝛼3, 𝑚3

𝑝3
2

𝑝1
2

𝑝2
2
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Example: triangle diagram
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2
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boundary
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𝛼1

𝛼2

𝐹 = 0

Deleted 
boundary

Disc𝑚2
2𝛪(𝑝𝑖)

𝛪(𝑝𝑖)

Disc𝑝1
2− 𝑚2+𝑚3
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𝛼1, 𝑚1

𝛼2, m2 𝛼3, 𝑚3

𝑝3
2

𝑝1
2

𝑝2
2

𝛼3

Instead: a) rethink on-shell conditions in FP space
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Pham (1967)
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Instead: b) Euler characteristics test

• This change in the topology is captured by Euler characteristic 𝜒 𝑌
• Euler characteristic corresponds to:

a) Number of solutions to the equation:

b) Number of master integrals of a given Feynman diagram
Huh (2013)

Bitoun, Bogner, Klausen, Panzer (2018)
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𝑌𝑖…𝑗 = ℂ𝐸−1 ∖ 𝐹 = ڂ 0 𝑈 = 0 𝑒∉{𝑖…𝑗}ڂ 𝛼𝑒 = 0  

𝜒 𝑌𝑖…𝑗 ቚ
𝜆𝑖=0

< 𝜒 𝑌𝑖…𝑗

?

Yes, the space Y degenerates and 
discontinuity w.r.t. 𝜆𝑖 can be non-zero  

No, the space Y does not degenerate 
and discontinuity w.r.t. 𝜆𝑖 is zero  

Fevola, Mizera, Telen (2023) 

Remove 𝛼𝑒boundaries 
from the singular loci:
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What we have learnt so far: 

• We established cutting edges in Feynman parameter space
• Use Euler characteristics test for a space degeneracy, i.e., “is the 

discontinuity in 𝜆𝑖  possible?”
• How do we identify which 𝛼𝑒  boundaries remove? 

Instead of solving Landau equations, 
we can use minimal cuts!
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Minimal cuts

• Minimal cuts are conservative choice, i.e. more propagators can 
be put on-shell and we could drop more 𝛼𝑖  boundaries

       

1 23

4
𝑝1

𝑝2 𝑝3

𝑝4

𝜆 = 𝑠12

We choose to under-constrain 
the space of the integration 

contour for our method to be 
easily implemented

Hierarchical constraints which 
follow from minimal cuts: 
Genealogical constraints
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Minimal cuts 

 Euler characteristic test

Allowed discontinuities by 
genealogical constraints

All 64 hierarchical constraints of the type: 



Two-loop examples
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540 genealogical 
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miss only 9 
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Abreu, Ita, Page, Tschernow (2022) 



Two-loop examples Compared to Steinman relations, for double-box diagram 
in the middle, we get 305 more constraints on the symbol.

156 genealogical 
constraints

miss only 31 
constraints

Chicherin, Gehrmann, Henn, Lo Presti, Mitev, Wasser (2019) 

620 genealogical 
constraints

miss only 25 
constraints

Abreu, Ita, Moriello, Page, Tschernow, Zeng (2020) 

540 genealogical 
constraints

miss only 9 
constraints

Abreu, Ita, Page, Tschernow (2022) 
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Missing constraints
• The Euler characteristic test cannot tell if sequences of type

can happen since no change in topology happens



Missing constraints
• The Euler characteristic test cannot tell if sequences of type

can happen since no change in topology happens
• In Steinmann relations

these sequences are not allowed as first two discontinuities but could 
happen further in the sequence of discontinuities.
Euler Characteristic test does not distinguish between these two scenarios



Three-loop example
• Even though we do not know the complete set of kinematic 

singularities of more complicated diagrams, we can derive some 
genealogical constraints nevertheless 



Three-loop example
• Even though we do not know the complete set of kinematic 

singularities of more complicated diagrams, we can derive some 
genealogical constraints nevertheless 



Summary

• Genealogical constraints find a rich number of hierarchical 
constraints on the analytical structure

• Genealogical constraints hold for all orders in dimensional 
regularisation

• Can be easily derived for any type of massive or massless 
kinematic configurations

• Further analysis can be conducted focusing on higher power 
propagators and integrals with numerators

Thank you!
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