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Gravity in 2+1 dimensions

Problem: Quantum gravity is hard!

Solution: Let’s look at a toy model.

In 2+1 dimensions general relativity is

▶ topological

▶ renormalizeable

▶ contains interesting solutions such as the BTZ black hole.

I will mostly discuss Λ > 0.
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Gravity and Chern-Simons theory

We can write 3d gravity in terms of the dreibein and spin
connection

ea, ωa .

▶ Transform under isometry group
SO(4) = SU(2)L × SU(2)R/Z2

▶ Dreibein must give an invertible metric

Rewrite these as a pair of su(2) connections

AL = i

(
ωa +

ea

ℓdS

)
La , AR = i

(
ωa − ea

ℓdS

)
L̄a .
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Gravity and Chern-Simons theory
At the level of the action and equations of motion, 3d gravity looks
like two Chern-Simons theories

SEH = kSCS [AL]− kSCS [AR ] , k =
ℓdS
4GN

Gµν +
1

ℓ2dS
gµν = 0 ⇔

{
FL = dAL + AL ∧ AL = 0

FR = dAR + AR ∧ AR = 0
.

But...

▶ Chern-Simons theory has a larger phase space. It does not
constraint the dreibein to be invertible.

▶ Chern-Simons theory exists on a fixed topology, (quantum)
gravity should not.

▶ Chern-Simons theory does not include the large
diffeomorphisms of gravity.
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Adding matter
It is possible to address these issues precisely for pure Λ < 0
gravity [Collier, Eberhardt, Zhang ’23].

To add matter we shall instead work perturbatively around each
saddle point of the action.

Schematically

Z ∼
∫

Dg e−SEH [g ]Zmatter[g ] .

We want to find a Chern-Simons version of this

Z ∼
∫

DALDAR e−kSCS [AL]+kSCS [AR ]Zmatter[AL,AR ] .
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Adding matter

What should Zmatter[AL,AR ] look like?
Some hints:

▶ Wilson loops in suitable representations correspond to particle
worldline quantum mechanics [Castro, Iqbal, Llabrés ’20]

▶ On the classical background our expression should reproduce
the known one-loop determinant for a given field [Anninos,
Denef, Law, Sun ’22]

An on-shell derivation can be performed from a heat kernel or
quasi-normal mode analysis.
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Adding matter

Our final result on a simple background such as S3 takes the form
of a contour integral over Wilson loops. For a minimally coupled
spinning field

logZ∆,s
matter =

i

8

∫
C

dα

α

cos
(
α
2

)
sin

(
α
2

) (
1 + 2s2 sin2

(α
2

))
×∑

R∆,s

TrRL

(
Pe

α
2π

∮
γ AL

)
TrRR

(
Pe−

α
2π

∮
γ AR

)
.
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Conclusions and future directions

▶ On a number of backgrounds we can write down a one-loop
determinant for massive matter fields in the language of
Chern-Simons theory.

▶ When Λ > 0 we understand how to evaluate such
determinants order by order in Chern-Simons theory very
efficiently.

▶ We are working to extend this approach to backgrounds with
more complicated topologies.

▶ It would be interesting to link this approach more closely with
worldline quantum mechanics calculations.
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