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1. The LUX-ZEPLIN Detector 4. Magnificent CEVNS
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° _°”rfe 10 aiey gie enes dimne (E, < 100MeV) coherently scatter off the Xenon nucleus rather than individual
projection chamber (TPC) [1]
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¢ We first expect to encounter 2B solar neutrinos. Cross-section predicted by SM,
deviation from a &« N# prediction can be a signature of BSM physics
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neutrinos (neutrino fog) % Xenon is neutron rich, M=129-132 for >72% of isotopes '~ [* I
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*» For correct abundance of dark matter from thermal production, expect self- (NSI) M ¢ dominate oy o (“2-), low energy ] - _
easurements ER measurements published 90% C.L. upper limit on effective

annihilation cross-section of (o) = 3 X 107%2° - cold dark matter heutrino magnetic moment (NMM)
** LZ is optimised to detect WIMPs, the leading candidate for cold dark matter
+** LZ uses Xenon as we expect maximal momentum transfer from WIMPs to Xenon

Current World-Leading Limits

5. Millicharged Particle Searches
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zero WIMPs between 9 WIMP M GeV/c? interaction of mCP and electrons (left), 90% C.L. upper limit on neutrino
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*c=corrected — correction factor for S1 and S2 areas depending on where the signal originates in the TPC

6. Heavy Dark Matter Searches

+»* Planck-scale dark matter candidates with larger scattering cross-sections—Multiply
Interacting Massive Particles (MIMPs)

+»* Signal topology: characteristic track of events; no such events found in 2022 dataset
after data selection cuts applied — 2024 in progress

E +* Demonstrated competitive sensitivity in search for Planck-scale dark matter
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s Axions: pseudo-scalar Nambu-Goldstone boson from new U(1) global chiral
symmetry included in QCD Lagrangian, look for axion-electron coupling; this
occurs via the axio-electric effect, analogous to the photoelectric effect

. 9
DM-nucleon cross section [cm*]

s Axion-like particles (ALPs): similar pseudo-scalars predicted to result from higher
dimensional gauge fields. Generally less constrained than QCD axions — wider
parameter space
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DM mass [GeV/c?] [5]

** Hidden photons (HPs): hypothetical new U(1)' vector gauge boson. Their
absorption by a bound electron is analogous to photoelectric effect, with photon
energy replaced by hidden photon rest mass 3]

8. Summary

% LZ has set the world leading limit on WIMP cross section, o = 2.2 x 104%cm? at

7. What'’s next for LZ? 43GeV/c?in the WS2024 analysis
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% Using the detector’s exceptional sensitivity, it is possible to explore other rare

s Continuing the WIMP h ly 280 of projected 1000 live d lysed
ontinding the search (only ot projecte ve days analysed) physics phenomena, many of which have been overviewed here

» Build on hints of signal from XenonNT and PandaX, our competitor experiments ** We are currently analysing the WS2024 dataset attempting to find low mass WIMPs

** Using our data to constrain BSM physics and other dark matter candidates and build on hints of signal from XenonNT and PandaX

¢ Planning for the next generation dark matter experiment — XLZD!
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