

Supervisor: **Searching for Dark Matter and Astrophysical** Dr Amy Cottle Signals at the LUX-ZEPLIN Experiment

Trinity R. Stenhouse | trinity.stenhouse.24@ucl.ac.uk

1. The LUX-ZEPLIN Detector

- 10 tonne (7 active) liquid Xenon time projection chamber (TPC) [1]
- ✤ S1: prompt scintillation S2: secondary scintillation from ionised

electrons

 $\left(\frac{S2}{S1}\right)_{FP} > \left(\frac{S2}{S1}\right)_{PP}$

allows background discrimination

Complex backgrounds from electric field, radioactive decays and soon, solar neutrinos (neutrino fog)

Drift time (determines depth)

2. Weakly Interacting Massive Particles

4. Magnificent CEvNS

- Coherent elastic neutrino nucleus scattering (CEvNS). Low energy neutrinos $(E_{\nu} < 100 \text{MeV})$ coherently scatter off the Xenon nucleus rather than individual nucleons
- ◆ We first expect to encounter ⁸B solar neutrinos. Cross-section predicted by SM, deviation from a $\propto N^2$ prediction can be a signature of BSM physics

- For correct abundance of dark matter from thermal production, expect selfannihilation cross-section of $\langle \sigma v \rangle = 3 \times 10^{-26} \rightarrow$ cold dark matter
- LZ is optimised to detect WIMPs, the leading candidate for cold dark matter
- LZ uses Xenon as we expect maximal momentum transfer from WIMPs to Xenon

Current World-Leading Limits

- Combine WS2022 and WS2024 for total exposure WIMP-nucleon $\sigma_{\rm SI}$ [cm²] of 4.2 tonne-years [2] Fits performed using frequentist profile likelihood ratio in (S1c, log₁₀S2c)* 10^{-48} Good agreement with
- background only hypothesis: zero WIMPs between 9 GeV/c^2 and 100 TeV/c²

*c=corrected – correction factor for S1 and S2 areas depending on where the signal originates in the TPC

3. Axion-Like Particles and Hidden Photons

* Axions: pseudo-scalar Nambu-Goldstone boson from new U(1) global chiral

dominate $\sigma_{NMM} \propto \left(\frac{\mu_v^2}{T}\right)$, low energy Non-Standard Interaction (NSI) Measurements ER measurements published

90% C.L. upper limit on effective neutrino magnetic moment (NMM)

5. Millicharged Particle Searches

90% C.L. limit on fractional charge $\epsilon = Q_y/e$ derived from atmospheric production channels as a function of mass m_{y} , using free electron model for interaction of mCP and electrons (left), 90% C.L. upper limit on neutrino effective millicharge (right)

produced by meson decay and proton bremsstrahlung [3,4]

6. Heavy Dark Matter Searches

- * Planck-scale dark matter candidates with larger scattering cross-sections—Multiply Interacting Massive Particles (MIMPs)
- Signal topology: characteristic track of events; no such events found in 2022 dataset after data selection cuts applied – 2024 in progress
- Demonstrated competitive sensitivity in search for Planck-scale dark matter

symmetry included in QCD Lagrangian, look for axion-electron coupling; this occurs via the **axio-electric effect**, analogous to the photoelectric effect

- * Axion-like particles (ALPs): similar pseudo-scalars predicted to result from higher dimensional gauge fields. Generally less constrained than QCD axions – wider parameter space
- ✤ Hidden photons (HPs): hypothetical new U(1)' vector gauge boson. Their absorption by a bound electron is analogous to photoelectric effect, with photon energy replaced by hidden photon rest mass [3]

7. What's next for LZ?

- Continuing the WIMP search (only 280 of projected 1000 live days analysed)
- Build on hints of signal from XenonNT and PandaX, our competitor experiments
- Using our data to constrain BSM physics and other dark matter candidates
- Planning for the next generation dark matter experiment XLZD!

Acknowledgements

Many thanks to the UCL dark matter group for all their help and support, and of course my supervisor Dr Amy Cottle.

8. Summary

- * LZ has set the world leading limit on WIMP cross section, $\sigma_{SI} = 2.2 \times 10^{-48} \text{cm}^2$ at 43GeV/c² in the WS2024 analysis
- ✤ Using the detector's exceptional sensitivity, it is possible to explore other rare physics phenomena, many of which have been overviewed here
- ✤ We are currently analysing the WS2024 dataset attempting to find low mass WIMPs and build on hints of signal from XenonNT and PandaX

References

1] LZ Collaboration, "LUX-ZEPLIN (LZ) Technical Design Report." arXiv, 2017. <u>htt</u>

[2] LZ Collaboration, "Dark Matter Search Results from 4.2 Tonne-Years of Exposure of the LUX-ZEPLIN (LZ) Experiment." arXiv, October 17, 2024. https://doi.org/10.1011/j.com/10.101 [3] LZ Collaboration, Aalbers, J., et al. "A Search for New Physics in Low-Energy Electron Recoils from the First LZ Exposure." arXiv, 2024. 10.1103/Ph [4] LZ Collaboration, "First Search for Atmospheric Millicharged Particles with the LUX-ZEPLIN Experiment." arXiv, December 6, 2024. https://doi.org/10.48550/arXiv.2412.04854 [5] LZ Collaboration, "New Constraints on Ultraheavy Dark Matter from the LZ Experiment." Physical Review D 109, no. 11 (2024): 112010. Published February 13, 2024. s[.]//doi.org/10.48550/arXiv.2402.0886⁴