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Model energy deposition rate as Gaussian cylinder:

1 dE, 1 p*
gy =) = — exp (—2@%)

2
A=(FLO) 2r dz of

Where o, Is the characteristic scattering length of
species A.

Gaussian allows us to find analytic solutions for the
pressure - turns out to be enough to capture the physics
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Assuming proposed acoustic neutrino
experiment parameters, could
constrain the gap!

Array Geometry: 10km x 10km x 1km
with 13 x 13 x 10 hydrophone
distribution. 2km depth.

Requirements p = 5 mPa, p = 300m,
N > 100/yr

events

Complementary to Humans, Mica,
Ohya and Cosmological Bounds



Punchline:

Future acoustic neutrino experiments could have the power to constrain
UHDM candidates
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Thank you for listening!
Any Questions?



Backup slides
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If we let the DM energy evolve but with no track width:
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If we let the DM energy evolve but with no track width:
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If we let the DM energy evolve but with no track width:
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Signal amplitude determined by the energy deposition rate perpendicular to the
hydrophone and the track - makes sense for cylindrical plane waves!
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