

Listening for ultra-heavy DM with underwater acoustic detectors

Damon Cleaver, Christopher McCabe and Ciaran A.J. O'Hare YTF 2024, 19/12/24

What is Dark Matter?

What is Dark Matter?

$\Omega_{CDM}h^2 \sim 0.120 \pm 0.001$

[Planck, 2018]

What is Dark Matter?

[Planck, 2018]

$\Omega_{CDM}h^2 \sim 0.120 \pm 0.001$

• Ultra-heavy dark matter is necessarily composite (if thermally produced) due to s-wave unitarity

- Ultra-heavy dark matter is necessarily composite (if thermally produced) due to s-wave unitarity
- Many different models for UHDM
	- PBH, Nuggets, Blobs, WIMPonium, Q-Balls etc…

- Ultra-heavy dark matter is necessarily composite (if thermally produced) due to s-wave unitarity
- Many different models for UHDM
	- PBH, Nuggets, Blobs, WIMPonium, Q-Balls etc…
- Is there a nice model-independent way to treat them?

- Ultra-heavy dark matter is necessarily composite (if thermally produced) due to s-wave unitarity
- Many different models for UHDM
	- PBH, Nuggets, Blobs, WIMPonium, Q-Balls etc…
- Is there a nice model-independent way to treat them?
- Answer: **Yes** (for some parts of parameter space)

- Ultra-heavy dark matter is necessarily composite (if thermally produced) due to s-wave unitarity
- Many different models for UHDM
	- PBH, Nuggets, Blobs, WIMPonium, Q-Balls etc…
- Is there a nice model-independent way to treat them?
- Answer: **Yes** (for some parts of parameter space)

Macroscopic DM Candidate

Interaction range

• Consider parameters of models where:

The Second Property of the Commission of Interaction range

Macroscopic DM Candidate

- Consider parameters of models where:
	- The DM is Planck-mass or larger

Interaction range

The Second Reserve Instruments

Macroscopic DM Candidate

ASSESSMENT PROPERTY AND IN

- Consider parameters of models where:
	- The DM is Planck-mass or larger
	- DM Radius R_χ much larger than interaction length scale

Interaction range

ASSESSED AND A PARTIES AND INCOME.

- Consider parameters of models where:
	- The DM is Planck-mass or larger
	- DM Radius R_χ much larger than interaction length scale
	- \bullet Geometric cross section dominates i.e. $\sigma_\chi \approx \pi R_\chi^2$

Interaction range

*********************^{***}

- Consider parameters of models where:
	- The DM is Planck-mass or larger
	- DM Radius R_χ much larger than interaction length scale
	- Geometric cross section dominates
	- Parameterise the interaction in terms of R_χ , -> set by **Interaction range** the theory -> make experimental statements about multiple models!

$$
\mathbf{S} \mathbf{i}.\mathbf{e}.\,\sigma_{\chi} \approx \pi R_{\chi}^2
$$

Macroscopic DM Candidate

- Consider parameters of models where:
	- The DM is Planck-mass or larger
	- DM Radius R_χ much larger than interaction length scale
	- Geometric cross section dominates
	- Parameterise the interaction in terms of R_χ , -> set by **Interaction range** the theory -> make experimental statements about multiple models!

$$
\mathbf{S} \mathbf{i}.\mathbf{e}.\,\sigma_{\chi} \approx \pi R_{\chi}^2
$$

Macroscopic DM Candidate

• We parametrise UHDM in grams (g)

• DM Flux: $\phi_\chi \approx 6$ $\sqrt{2}$ 1 g $\left(\frac{2m}{m_\chi}\right)$ km⁻² yr⁻¹

• We parametrise UHDM in grams (g)

• We parametrise UHDM in grams (g)

• DM Flux:
$$
\phi_{\chi} \approx 6 \left(\frac{1 \text{ g}}{m_{\chi}} \right) \text{ km}^{-2} \text{ yr}^{-1}
$$

• Need a *very* large detector (or very long integration time) to have significant

number of events.

• We parametrise UHDM in grams (g)

• DM Flux:
$$
\phi_{\chi} \approx 6 \left(\frac{1 \text{ g}}{m_{\chi}} \right) \text{ km}^{-2} \text{ yr}^{-1}
$$

• Need a *very* large detector (or very long integration time) to have significant

- number of events.
- No hope for conventional detectors (LUX-ZEPLIN, XENONnT etc.)

• We parametrise UHDM in grams (g)

• DM Flux:
$$
\phi_{\chi} \approx 6 \left(\frac{1 \text{ g}}{m_{\chi}} \right) \text{ km}^{-2} \text{ yr}^{-1}
$$

• Need a *very* large detector (or very long integration time) to have significant

- number of events.
- No hope for conventional detectors (LUX-ZEPLIN, XENONnT etc.)

 $10⁹$

• Annoying "gap" in constraints

6

 $10⁹$

- Annoying "gap" in constraints
- Mica underground too much overburden

- Annoying "gap" in constraints
- Mica underground too much overburden
- Radar not sensitive enough - not enough ionisation

- Annoying "gap" in constraints
- Mica underground too much overburden
- Radar not sensitive enough - not enough ionisation
- **• What phenomena could we use to constrain this region?**

• Idea: DM is weakly interacting enough to make it through the atmosphere

- Idea: DM is weakly interacting enough to make it through the atmosphere
- Reaches much more dense medium: **the ocean**

- Idea: DM is weakly interacting enough to make it through the atmosphere
- Reaches much more dense medium: **the ocean**
- DM deposits energy into the ocean creating pressure waves

- Idea: DM is weakly interacting enough to make it through the atmosphere
- Reaches much more dense medium: **the ocean**
- DM deposits energy into the ocean creating pressure waves
- Detect pressure waves using **a large hydrophone array**

- Idea: DM is weakly interacting enough to make it through the atmosphere
- Reaches much more dense medium: **the ocean**
- DM deposits energy into the ocean creating pressure waves
- Detect pressure waves using **a large hydrophone array**

- Idea: DM is weakly interacting enough to make it through the atmosphere
- Reaches much more dense medium: **the ocean**
- DM deposits energy into the ocean creating pressure waves
- Detect pressure waves using **a large hydrophone array**

Acoustic Detection

- Idea: DM is weakly interacting enough to make it through the atmosphere
- Reaches much more dense medium: **the ocean**
- DM deposits energy into the ocean creating pressure waves
- Detect pressure waves using **a large hydrophone array**

• Propositions for acoustic neutrino experiments with $\mathcal{O}(100\ \text{km}^3)$ hydrophone arrays [Lahmann, 2016]

- arrays [Lahmann, 2016]
- section

• Propositions for acoustic neutrino experiments with $\mathcal{O}(100\ \text{km}^3)$ hydrophone

• Detect UHE neutrinos. Similar number density issues, but similarly high cross

- arrays [Lahmann, 2016]
- section
- instrumentation

• Propositions for acoustic neutrino experiments with $\mathcal{O}(100\ \text{km}^3)$ hydrophone

• Detect UHE neutrinos. Similar number density issues, but similarly high cross

• Acoustic propagation distance in water much greater than light -> less dense

• Detect UHE neutrinos. Similar number density issues, but similarly high cross

- arrays [Lahmann, 2016]
- section
- Acoustic propagation distance in water much greater than light -> less dense instrumentation
- Energy deposition comes from **hadronic showers**

• Propositions for acoustic neutrino experiments with $\mathcal{O}(100\ \text{km}^3)$ hydrophone

• Detect UHE neutrinos. Similar number density issues, but similarly high cross

- arrays [Lahmann, 2016]
- section
- Acoustic propagation distance in water much greater than light -> less dense instrumentation
- Energy deposition comes from **hadronic showers**

• Propositions for acoustic neutrino experiments with $\mathcal{O}(100\ \text{km}^3)$ hydrophone

• Detect UHE neutrinos. Similar number density issues, but similarly high cross

- arrays [Lahmann, 2016]
- section
- Acoustic propagation distance in water much greater than light -> less dense instrumentation
- Energy deposition comes from **hadronic showers**

• Propositions for acoustic neutrino experiments with $\mathcal{O}(100\ \text{km}^3)$ hydrophone

 $\nabla^2 p -$ 1 c_s^2 *s* $\partial^2 p$ ∂*t*²

= − *α* c_p ∂2 *q*(*r*, *t*) ∂*t*²

 $\nabla^2 p$ 1 c_s^2 *s* $\partial^2 p$ ∂*t*² = − *α* c_p ∂2 *q*(*r*, *t*) ∂*t*² **Acoustic pressure**

 $\nabla^2 p$ 1 c_s^2 *s* $\partial^2 p$ ∂*t*² **Acoustic pressure**

Energy Deposition Density

$$
\frac{d}{dz} = -\frac{\alpha}{c_p} \frac{\partial^2 q(r, t)}{\partial t^2}
$$

Energy Deposition Density

General Solution:
$$
p(r,t) = \frac{\alpha}{4\pi c_p} \int \frac{d^3r'}{|r-r'|} \frac{\partial^2 q(r',t')}{\partial t^2}
$$

$$
t' = t - |r-r'|/c_s
$$

Taking a geometric cross section only and taking the number of scatters to infinity:

$$
\frac{dE_{\chi}}{dz} = -\rho_{sea}\sigma_{\chi}v_{\chi}^2 \exp\left(-\frac{z}{\mathcal{C}_{sea}}\right)
$$

Taking a geometric cross section only and taking the number of scatters to infinity:

$$
\frac{dE_{\chi}}{dz} = -\rho_{\text{sea}} \sigma_{\chi} v_{\chi}^2 \exp\left(-\frac{z}{\mathcal{C}_{\text{sea}}}\right)
$$

Where ℓ_{sea} is the characteristic length of the energy deposition:

$$
\ell_{\text{sea}} = \frac{m_\chi}{2\rho_{\text{sea}}\sigma_\chi} \simeq 480 \,\text{km} \times \left(\frac{m_\chi}{10^{-2}\,\text{g}}\right) \left(\frac{10^{-10}\,\text{cm}^2}{\sigma_\chi}\right)
$$

Taking a geometric cross section only and taking the number of scatters to infinity:

$$
\frac{dE_{\chi}}{dz} = -\rho_{sea}\sigma_{\chi}v_{\chi}^2 \exp\left(-\frac{z}{\mathcal{C}_{sea}}\right)
$$

Where ℓ_{sea} is the characteristic length of the energy deposition:

$$
\ell_{\text{sea}} = \frac{m_\chi}{2\rho_{\text{sea}}\sigma_\chi} \simeq 480 \,\text{km} \times \left(\frac{m_\chi}{10^{-2}\,\text{g}}\right) \left(\frac{10^{-10}\,\text{cm}^2}{\sigma_\chi}\right)
$$

 $\ell_{\rm sea}$ can be very long, in this case:

$$
\frac{dE_{\chi}}{dz} \simeq -\rho_{\text{sea}} \sigma_{\chi} v_{\chi}^2 = \text{const}
$$

Model energy deposition rate as Gaussian cylinder:

$$
q(r) = \sum_{A=\{H,O\}} \frac{1}{2\pi} \frac{dE_A}{dz} \frac{1}{\sigma_A^2} \exp\left(-\frac{\rho^2}{2\sigma_A^2}\right)
$$

Model energy deposition rate as Gaussian cylinder:

$$
q(r) = \sum_{A=\{H,O\}} \frac{1}{2\pi} \frac{dE_A}{dz} \frac{1}{\sigma_A^2} \exp\left(-\frac{\rho^2}{2\sigma_A^2}\right)
$$

Where $\sigma_{\!A}$ is the characteristic scattering length of species A.

Model energy deposition rate as Gaussian cylinder:

$$
q(r) = \sum_{A=\{H,O\}} \frac{1}{2\pi} \frac{dE_A}{dz} \frac{1}{\sigma_A^2} \exp\left(-\frac{\rho^2}{2\sigma_A^2}\right)
$$

Where $\sigma_{\!A}$ is the characteristic scattering length of species A.

What is q for UHDM?

Gaussian allows us to find analytic solutions for the pressure - turns out to be enough to capture the physics

What is the pressure solution?

What is the pressure solution?

and take width much smaller than detection distance $\sigma \ll \rho$:

$$
p(r, t; \sigma \ll \rho) = \frac{\alpha}{2\pi c_p} \frac{dE}{dz} \frac{c_s^2}{\sqrt{2\pi\sigma^3}} \frac{1}{\sqrt{\rho}} I_p \left(\frac{t - \rho/c_s}{\sigma/c_s} \right)
$$

Take infinitely long line track (good for large $\ell_{\rm DM}$), instantaneous energy deposition

What is the pressure solution?

and take width much smaller than detection distance $\sigma \ll \rho$:

$$
p(r, t; \sigma \ll \rho) = \frac{\alpha}{2\pi c_p} \frac{dE}{dz} \frac{c_s^2}{\sqrt{2\pi\sigma^3}} \frac{1}{\sqrt{\rho}} I_p \left(\frac{t - \rho/c_s}{\sigma/c_s} \right)
$$

$$
I_p(A) = \int_0^\infty dY \sqrt{Y} \exp\left(-\frac{Y^2}{2}\right)
$$

$$
\frac{Y^2}{2} \bigg\} \cos \left(A \, Y + \frac{\pi}{4} \right)
$$

$$
= -\frac{\pi A}{4\sqrt{2}(A^2)^{1/4}} \exp\left(-\frac{A^2}{4}\right) \left[\left(A + \sqrt{A^2}\right) \left(I_{1/4}\left(\frac{A^2}{4}\right) - I_{3/4}\left(\frac{A^2}{4}\right)\right) + \frac{\sqrt{2}}{\pi} \left(\sqrt{A^2} K_{1/4}\left(\frac{A^2}{4}\right) - AK_{3/4}\left(\frac{A^2}{4}\right)\right)\right]
$$

Take infinitely long line track (good for large $\ell_{\rm DM}$), instantaneous energy deposition

 $p(r, t; \sigma \ll \rho) =$ *α* $2\pi c_p$ *dE dz* c_s^2 2*πσ*³ 1 *ρ Ip* $\overline{ }$ $t - \rho/c_s$ *σ*/*cs*)

$$
p(r, t; \sigma \ll \rho) = \frac{\alpha}{2\pi c_p} \frac{dE}{dz} \frac{c_s^2}{\sqrt{2\pi\sigma^3}} \frac{1}{\sqrt{\rho}} I_p \left(\frac{t - \rho/c_s}{\sigma/c_s} \right)
$$

Shape determined by $I_p \thicksim \mathcal{O}(1)$. Solution is **bi-polar**

$$
p(r, t; \sigma \ll \rho) = \frac{\alpha}{2\pi c_p} \frac{dE}{dz} \frac{c_s^2}{\sqrt{2\pi\sigma^3}} \frac{1}{\sqrt{\rho}} I_p \left(\frac{t - \rho/c_s}{\sigma/c_s} \right)
$$

Shape determined by $I_p \thicksim \mathcal{O}(1)$. Solution is **bi-polar**

Large MPa signal for UHDM in target parameter regions - **determined by prefactor**

$$
p(r, t; \sigma \ll \rho) = \frac{\alpha}{2\pi c_p} \frac{dE}{dz} \frac{c_s^2}{\sqrt{2\pi\sigma^3}} \frac{1}{\sqrt{\rho}} I_p \left(\frac{t - \rho/c_s}{\sigma/c_s} \right)
$$

Shape determined by $I_p \thicksim \mathcal{O}(1)$. Solution is **bi-polar**

Large MPa signal for UHDM in target parameter regions - **determined by prefactor**

Full pressure solution is sum of O and H contributions.

Can also find full frequency solution (must be solved numerically)

Can also find full frequency solution (must be solved numerically)

Frequency cut-off set by c_s/σ_A

Can also find full frequency solution (must be solved numerically)

Frequency cut-off set by c_s/σ_A

Can "integrate out" width to get an analytic approximation at lower freq:

Can also find full frequency solution (must be solved numerically)

Frequency cut-off set by c_s/σ_A

Can "integrate out" width to get an analytic approximation at lower freq:

$$
\tilde{p}_A(\rho,\omega) \approx \frac{\omega \alpha}{2\pi c_p} \frac{dE_A}{dz} \frac{\pi}{2} H_0^{(2)} \left(\frac{\rho \omega}{c_s} \right)
$$

Is this the full story?

Is this the full story?

$$
\tilde{a}(\omega) = \frac{\omega^2}{\omega_0 c_s} + \frac{2}{\lambda_1} \frac{i\omega}{\omega_1 + i\omega} + \frac{2}{\lambda_2} \frac{i\omega}{\omega_2 + i\omega}
$$

Need to account for other attenuation effects! Packaged into an absorption coefficient *a* ˜(*ω*):

Is this the full story?

Need to account for other attenuation effects! Packaged into an absorption coefficient *a* ˜(*ω*):

Need to account for other attenuation effects! Packaged into an absorption coefficient *a* ˜(*ω*):

The pressure in frequency space becomes:

Need to account for other attenuation effects! Packaged into an absorption coefficient *a* ˜(*ω*):

The pressure in frequency space becomes:

$$
\tilde{p}_a(\rho,\omega) = \exp\left(-\frac{\tilde{a}(\omega)\rho}{2}\right)
$$

 $\left(\frac{\partial F}{\partial \rho}\right)$ $\tilde{p}(\rho,\omega)$

Takes frequency cut-off from $\mathcal{O}(10^{11} \,\text{Hz})$ to $\mathcal{O}(10^5 \,\text{Hz})$

Takes frequency cut-off from $O(10^{11}$ Hz) to $O(10^5$ Hz)

Cut-off profile is not Gaussian at certain characteristic distances

Nano-second pulse of MPa amplitude has become micro-second pulse at Pa amplitude

Nano-second pulse of MPa amplitude has become micro-second pulse at Pa amplitude

non-Gaussian frequency cut-off = different shaped pulses. **Distance dependent**

Nano-second pulse of MPa amplitude has become micro-second pulse at Pa amplitude

non-Gaussian frequency cut-off = different shaped pulses. **Distance dependent**

• We need to understand the experimental noise sources to understand what signals

we can see.

- we can see.
- **state noise.**

• In the 10-50 kHz band, the noise is dominated by sea surface agitation called **sea-**

• We need to understand the experimental noise sources to understand what signals

• We need to understand the experimental noise sources to understand what signals

• In the 10-50 kHz band, the noise is dominated by sea surface agitation called **sea-**

- we can see.
- **state noise.**
- **lowest sea state noise.** We are always sea-state noise limited

• Self noise of hydrophones designed for UHE neutrino detection is comparable to

• In the 10-50 kHz band, the noise is dominated by sea surface agitation called **sea-**

• Self noise of hydrophones designed for UHE neutrino detection is comparable to

• Ocean Noise Experiment (O_VNE) has measured this noise is Mediterranean on

- we can see.
- **state noise.**
- **lowest sea state noise.** We are always sea-state noise limited
- average to be approx. 5 mPa **we take this as a baseline value.**

• We need to understand the experimental noise sources to understand what signals

• In the 10-50 kHz band, the noise is dominated by sea surface agitation called **sea-**

• Self noise of hydrophones designed for UHE neutrino detection is comparable to

• Ocean Noise Experiment (O_VNE) has measured this noise is Mediterranean on

- we can see.
- **state noise.**
- **lowest sea state noise.** We are always sea-state noise limited
- average to be approx. 5 mPa **we take this as a baseline value.**
- using machine learning algorithms

• We need to understand the experimental noise sources to understand what signals

• **Transient noise sources exist** (e.g. dolphins) we assume these can be taken care of

• In the 10-50 kHz band, the noise is dominated by sea surface agitation called **sea-**

• Self noise of hydrophones designed for UHE neutrino detection is comparable to

• Ocean Noise Experiment (O_VNE) has measured this noise is Mediterranean on

- we can see.
- **state noise.**
- **lowest sea state noise.** We are always sea-state noise limited
- average to be approx. 5 mPa **we take this as a baseline value.**
- using machine learning algorithms

• We need to understand the experimental noise sources to understand what signals

• **Transient noise sources exist** (e.g. dolphins) we assume these can be taken care of

• In the 10-50 kHz band, the noise is dominated by sea surface agitation called **sea-**

• Self noise of hydrophones designed for UHE neutrino detection is comparable to

• Ocean Noise Experiment (O_VNE) has measured this noise is Mediterranean on

- we can see.
- **state noise.**
- **lowest sea state noise.** We are always sea-state noise limited
- average to be approx. 5 mPa **we take this as a baseline value.**
- using machine learning algorithms

• We need to understand the experimental noise sources to understand what signals

• **Transient noise sources exist** (e.g. dolphins) we assume these can be taken care of

Preliminary Sensitivities

- Assuming proposed acoustic neutrino experiment parameters, **could constrain the gap!**
- Array Geometry: 10km x 10km x 1km with 13 x 13 x 10 hydrophone distribution. 2km depth.
- Requirements $p = 5$ mPa, $\rho = 300$ m, $N_{\text{events}} \geq 100/\text{yr}$
- Complementary to Humans, Mica, Ohya and Cosmological Bounds

Punchline:

Future acoustic neutrino experiments could have the power to constrain UHDM candidates

Thank you for listening! Any Questions?

Backup slides

• DM is **galactic** in origin. Neutrinos are **extragalactic.**

- DM is **galactic** in origin. Neutrinos are **extragalactic.**
- Direction of dark matter in the direction of the Cygnus constellation.

- DM is **galactic** in origin. Neutrinos are **extragalactic.**
- Direction of dark matter in the direction of the Cygnus constellation.
- So UHDM flux modulates

- DM is **galactic** in origin. Neutrinos are **extragalactic.**
- Direction of dark matter in the direction of the Cygnus constellation.
- So UHDM flux modulates
- Varies throughout the year due to following the sidereal day over solar day

- DM is **galactic** in origin. Neutrinos are **extragalactic.**
- Direction of dark matter in the direction of the Cygnus constellation.
- So UHDM flux modulates
- Varies throughout the year due to following the sidereal day over solar day

Angular Entry to Array

• Pulse gets more asymmetry from non-Gaussian cut-off shape in freq space.

- Pulse gets more asymmetry from non-Gaussian cut-off shape in freq space.
- In pure water, freq. cut-off *is Gaussian. Shape is the same as unattenuated case!*

- Pulse gets more asymmetry from non-Gaussian cut-off shape in freq space.
- In pure water, freq. cut-off *is Gaussian. Shape is the same as unattenuated case!*
- Maximal asymmetry near the characteristic absorption scale of Magnesium Sulphate $(\lambda_2 = 152.7 \text{m})$

- Pulse gets more asymmetry from non-Gaussian cut-off shape in freq space.
- In pure water, freq. cut-off *is Gaussian. Shape is the same as unattenuated case!*
- Maximal asymmetry near the characteristic absorption scale of Magnesium Sulphate $(\lambda_2 = 152.7 \text{m})$
- Never quite becomes same as pure water due to imaginary components to the absorption coefficient

- Pulse gets more asymmetry from non-Gaussian cut-off shape in freq space.
- In pure water, freq. cut-off *is Gaussian. Shape is the same as unattenuated case!*
- Maximal asymmetry near the characteristic absorption scale of Magnesium Sulphate $(\lambda_2 = 152.7 \text{m})$
- Never quite becomes same as pure water due to imaginary components to the absorption coefficient

- Pulse gets more asymmetry from non-Gaussian cut-off shape in freq space.
- In pure water, freq. cut-off *is Gaussian. Shape is the same as unattenuated case!*
- Maximal asymmetry near the characteristic absorption scale of Magnesium Sulphate $(\lambda_2 = 152.7 \text{m})$
- Never quite becomes same as pure water due to imaginary components to the absorption coefficient

Finding a good hydrophone distance

• Calculate range using slowing down approximation range of H and O using SRIM software package.

- Calculate range using slowing down approximation range of H and O using SRIM software package.
- Find at typical recoil energy of $E_O = 30.2$ keV and $E_H = 1.9$ keV, the fit widths are $\sigma_O = 0.14$ μm and $\sigma_H = 0.082 \ \mu m$

- Calculate range using slowing down approximation range of H and O using SRIM software package.
- Find at typical recoil energy of $E_O = 30.2$ keV and $E_H = 1.9$ keV, the fit widths are $\sigma_O = 0.14$ μm and $\sigma_H = 0.082 \ \mu m$
- While Gaussian is not an excellent fit, the true nature of the distribution is irrelevant after attenuation

- Calculate range using slowing down approximation range of H and O using SRIM software package.
- Find at typical recoil energy of $E_O = 30.2$ keV and $E_H = 1.9$ keV, the fit widths are $\sigma_O = 0.14$ μm and $\sigma_H = 0.082 \ \mu m$
- While Gaussian is not an excellent fit, the true nature of the distribution is irrelevant after attenuation

- Calculate range using slowing down approximation range of H and O using SRIM software package.
- Find at typical recoil energy of $E_O = 30.2$ keV and $E_H = 1.9$ keV, the fit widths are $\sigma_O = 0.14$ μm and $\sigma_H = 0.082 \ \mu m$
- While Gaussian is not an excellent fit, the true nature of the distribution is irrelevant after attenuation

 $q(\rho',z') =$

 $p(\rho, z, t) =$ *α* $4\pi c_p$ *dE dz*′

1 2*π δ*(*ρ*′) *ρ*′ *Ceaz*′

$$
\int_{z'=z} \frac{\partial}{\partial t} \left(\frac{e^{a(c_s\sqrt{t^2-t_0^2})}}{\sqrt{t^2-t_0^2}} \Theta(t-t_0) \right).
$$

 $p(\rho, z, t) =$ *α* $4\pi c_p$ *dE dz*′

$$
=\frac{1}{2\pi}\frac{\delta(\rho')}{\rho'}Ce^{az'}
$$

$$
\int_{z'=z} \frac{\partial}{\partial t} \left(\frac{e^{a(c_s\sqrt{t^2-t_0^2})}}{\sqrt{t^2-t_0^2}} \Theta(t-t_0) \right).
$$

If we let the DM energy evolve but with no track width:

 $q(\rho',z') =$

$$
=\frac{1}{2\pi}\frac{\delta(\rho')}{\rho'}Ce^{az'}
$$

$$
p(\rho, z, t) = \frac{\alpha}{4\pi c_p} \frac{dE}{dz'}\Bigg|_{z'=z} \frac{\partial}{\partial t} \left(\frac{e^{a(c_s\sqrt{t^2 - t_0^2})}}{\sqrt{t^2 - t_0^2}} \Theta(t - t_0) \right).
$$

If we let the DM energy evolve but with no track width:

 $q(\rho',z') =$

We find a pressure solution:

$$
q(\rho',z')=
$$

We find a pressure solution:

$$
=\frac{1}{2\pi}\frac{\delta(\rho')}{\rho'}Ce^{az'}
$$

$$
p(\rho, z, t) = \frac{\alpha}{4\pi c_p} \frac{dE}{dz'}\Bigg|_{z'=z} \frac{\partial}{\partial t} \left(\frac{e^{a(c_s\sqrt{t^2 - t_0^2})}}{\sqrt{t^2 - t_0^2}} \Theta(t - t_0) \right).
$$

If we let the DM energy evolve but with no track width:

Signal amplitude determined by the energy deposition rate **perpendicular to the hydrophone and the track - makes sense for cylindrical plane waves!**

$$
=\frac{1}{2\pi}\frac{\delta(\rho')}{\rho'}Ce^{az'}
$$

$$
p(\rho, z, t) = \left| \frac{\alpha}{4\pi c_p} \frac{dE}{dz'} \right|_{z'=z} \frac{\partial}{\partial t} \left(\frac{e^{a(c_s\sqrt{t^2 - t_0^2})}}{\sqrt{t^2 - t_0^2}} \Theta(t - t_0) \right).
$$

If we let the DM energy evolve but with no track width:

 $q(\rho',z') =$

We find a pressure solution:

Signal amplitude determined by the energy deposition rate **perpendicular to the hydrophone and the track - makes sense for cylindrical plane waves!**