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• Mica underground - too 
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∇2p −
1
c2

s

∂2p
∂t2

= −
α
cp

∂2q(r, t)
∂t2

Acoustic pressure

Energy Deposition Density

p(r, t) =
α

4πcp ∫
d3r′ 

|r − r′ |
∂2q (r′ , t′ )

∂t2General Solution:

t′ = t − |r − r′ | /cs

Pressure waves come from thermo-acoustic heating, which obeys the following DE: 
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dEχ

dz
= − ρseaσχv2

χ exp (−
z

ℓsea )
Where  is the characteristic length of the energy deposition:ℓsea

ℓsea =
mχ

2ρseaσχ
≃ 480 km × ( mχ

10−2 g ) ( 10−10 cm2

σχ )
  can be very long, in this case: ℓsea

dEχ

dz
≃ − ρseaσχv2

χ = const
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q(r) = ∑
A={H,O}

1
2π

dEA

dz
1
σ2

A
exp (−

ρ2

2σ2
A )

What is q for UHDM?

Gaussian allows us to find analytic solutions for the 
pressure - turns out to be enough to capture the physics

σA



What is the pressure solution?

12



What is the pressure solution?

12

Take infinitely long line track (good for large ), instantaneous energy deposition 

and take width much smaller than detection distance :

ℓDM
σ ≪ ρ

p(r, t; σ ≪ ρ) =
α

2πcp

dE
dz

c2
s

2πσ3

1
ρ

Ip ( t − ρ/cs

σ/cs )



What is the pressure solution?

12

Take infinitely long line track (good for large ), instantaneous energy deposition 

and take width much smaller than detection distance :

ℓDM
σ ≪ ρ

p(r, t; σ ≪ ρ) =
α

2πcp

dE
dz

c2
s

2πσ3

1
ρ

Ip ( t − ρ/cs

σ/cs )
Ip(A) = ∫

∞

0
dY Y exp (−

Y2

2 ) cos (A Y +
π
4 )

= −
πA

4 2(A2)1/4
exp (−

A2

4 ) [(A + A2) (I1/4 ( A2

4 ) − I3/4 ( A2

4 )) +
2

π ( A2K1/4 ( A2

4 ) − AK3/4 ( A2

4 ))]



What does  look like?p

13

p(r, t; σ ≪ ρ) =
α

2πcp

dE
dz

c2
s

2πσ3

1
ρ

Ip ( t − ρ/cs

σ/cs )



What does  look like?p

13

p(r, t; σ ≪ ρ) =
α

2πcp

dE
dz

c2
s

2πσ3

1
ρ

Ip ( t − ρ/cs

σ/cs )
Shape determined by . 

Solution is bi-polar

Ip ∼ 𝒪(1)



What does  look like?p

13

p(r, t; σ ≪ ρ) =
α

2πcp

dE
dz

c2
s

2πσ3

1
ρ

Ip ( t − ρ/cs

σ/cs )
Shape determined by . 

Solution is bi-polar

Ip ∼ 𝒪(1)

Large MPa signal for UHDM in target 
parameter regions - determined by pre-
factor 



What does  look like?p

13

p(r, t; σ ≪ ρ) =
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s

2πσ3
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ρ

Ip ( t − ρ/cs

σ/cs )
Shape determined by . 

Solution is bi-polar

Ip ∼ 𝒪(1)

Large MPa signal for UHDM in target 
parameter regions - determined by pre-
factor 

Full pressure solution is sum of O and H 
contributions.
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What does  look like?p
Can also find full frequency solution 
(must be solved numerically)

Frequency cut-off set by cs/σA

Can “integrate out” width to get an 
analytic approximation at lower freq:

p̃A(ρ, ω) ≈
ωα

2πcp

dEA

dz
π
2

H(2)
0 ( ρ ω

cs )



Is this the full story?

15



Is this the full story?

15
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Takes frequency cut-off from 

 to 𝒪(1011 Hz) 𝒪(105 Hz)

Cut-off profile is not Gaussian at 
certain characteristic distances
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Preliminary Sensitivities
• Assuming proposed acoustic neutrino 

experiment parameters, could 
constrain the gap! 

• Array Geometry: 10km x 10km x 1km 
with 13 x 13 x 10 hydrophone 
distribution. 2km depth.  

• Requirements 5 mPa, 300m, 
100/yr 

• Complementary to Humans, Mica, 
Ohya and Cosmological Bounds

p = ρ =
Nevents ≥

19
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Punchline:
Future acoustic neutrino experiments could have the power to constrain 

UHDM candidates
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Thank you for listening! 
Any Questions?
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Finding a good hydrophone distance 
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