Defects in Conformal Field Theory

Their symmetries, fusion, and cusps

Based on arXiv:2406.04561 with Petr Kravchuk & Ritam Sinha and upcoming work with Petr Kravchuk

Alex Radcliffe, 19/12/2024

Conformal Field Theory

- A CFT is a QFT that is invariant under the conformal group, $SO_0(d + 1, 1)$ (if $d \ge 3$).
- A variety of applications:
 - Second-order phase transitions
 - AdS/CFT correspondence
 - String theory on the worldsheet
 - Pure maths (e.g. monstrous moonshine, Langlands program, spectral geometry, automorphic forms...)

[Alexandrov, Conformal map, Wikipedia]

Constraints of Conformal Symmetry

- Scale-invariance!
- Can find a set of operators $\mathcal{O}_{\Delta}(x)$ such that:
 - $\mathcal{O}_{\Delta}(\lambda x) = \lambda^{-\Delta} \mathcal{O}_{\Delta}(x),$
 - Every operator in our theory can be written in a basis of $\partial^{\mu_1} \dots \partial^{\mu_p} \mathcal{O}_{\Delta}(x)$.
- These are called primary operators.
- Scale-invariance tells us that

•
$$\langle \mathcal{O}_{\Delta}(x)\mathcal{O}_{\Delta'}(x')\rangle = \frac{c\delta_{\Delta\Delta'}}{|x-x'|^{\Delta}}$$

Operator-Product Expansion

- $\mathcal{O}_{\Delta_1}(x_1)\mathcal{O}_{\Delta_2}(x_2) = \sum_{\Delta_3} f_{\Delta_1 \Delta_2 \Delta_3} C_{\Delta_3}(x_1, x_2, x_3, \partial_{x_3})\mathcal{O}_{\Delta_3}(x_3)$ is called an operator product expansion.
- We can use this in a correlator to write an *n*-point function as a sum over (*n* 1) point functions.

Defects in Conformal Field Theory

• $S = S_{CFT} + S_{\mathscr{D}}[\Sigma],$ where $\, \cdot \, S_{\mathscr{D}}[\Sigma] = \int_{\Sigma} d^p \sigma \sqrt{\gamma} \, \mathscr{L}_{\mathscr{D}}$ • $\langle \overline{\mathcal{O}}_1(x_1) \dots \overline{\mathcal{O}}_n(x_n) \rangle_{\mathfrak{M}}$ $= \int [D\Phi] e^{-S_{CFT} - S_{\mathscr{D}}[\Sigma]} \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n)$ $= \langle e^{-S_{\mathscr{D}}[\Sigma]} \mathcal{O}_{1}(x_{1}) \dots \mathcal{O}_{n}(x_{n}) \rangle$ • Non-local operator $e^{-S_{\mathcal{D}}[\Sigma]}$!

Why care about defects?

CFT Application	Defect Significance
Second-order phase transition	Defects can be used to model impurities in materials.
m AdS/CFT	Supersymmetric Wilson loops in N=4 SYM correspond to boundary conditions to strings in AdS.
Pure maths	Wilson loops in Chern-Simons are related to knot polynomials.

Symmetries and Conformal Defects

• Insertion of a *p*-dimensional conformal defect breaks conformal symmetry,

 $SO_0(d+1,1)$ \bigvee $SO_0(p+1,1) \times SO(d-p)$

Properties of conformal defects.

- As translation symmetry is broken, we introduce a length scale into correlation functions, x_{\perp} .
- For example, $\langle \mathcal{O}(x_{\perp}, x_{\parallel}) \rangle = \frac{a}{|x_{\perp}|^{\Delta}}$
- Stress tensor is no longer conserved, $\partial_{\mu}T^{\mu i}(x) = \delta^{(d-p)}(x_{\perp})D^{i}(x_{\parallel}), \qquad i = p + 1, \dots, d$
- The displacement operator $D^i(x_{\parallel})$ generates translations of the defect.

Fusion of Conformal Defects

•
$$e^{-S_{\mathscr{D}_1}[\Sigma_1]}e^{-S_{\mathscr{D}_2}[\Sigma_2]} \xrightarrow{L \to 0} e^{-S_{\mathrm{eff}}[\Sigma_{\mathrm{fus}}]}$$

- Like an OPE for defects
- The effective description will be valid at scales $R \gg L$.
- View this as an RG flow, with $S_{\rm eff}$ providing an effective IR description of the theory

Symmetries and Conformal Defect Fusion

Insertion of another p

 dimensional conformal defect
 breaks the symmetry further

 $SO_0(p+1,1) \times SO(d-p)$ \downarrow $SO_0(p+1,1) \times SO(d-p-1)$

Lagrangian = bad

But sometimes,

Lagrangian = bad

necessary

Finding the effective action

- We rescale the metric, $g^{\mu\nu}(x) \rightarrow \hat{g}^{\mu\nu}(x) = \Omega(x)^2 g^{\mu\nu}(x)$
- We choose the rescaling such that:

•
$$v^{\mu} \hat{g}_{\mu\nu} v^{\nu} = 1$$

• $\hat{H}^{\mu} = 0, \, \hat{R}^{ij} - \frac{\hat{R}}{2(d-1)} \hat{g}^{ij} = 0$, where $i, j \in \{p+1, \dots, d\}$

• Write down the most general local effective action, compatible with symmetry properties

$$S_{\rm eff} = \int d^p \sigma \sqrt{\hat{\gamma}} \sum_{\Lambda} \lambda_{\Lambda} \mathcal{O}_{\Lambda}$$

• Use theory-specific techniques to calculate the undetermined coefficients (e.g. quantum spectral curve, fuzzy sphere regularization).

Exponential Map

 $(r,\theta) \in \mathbb{R}^d$

Defect Fusion and cusps

An Example — Cusped Wilson Line in $\mathcal{N} = 4$ SYM

•
$$W[\mathcal{D}] = P\left[\exp\left(\int d\tau i(A_{\mu}\dot{x}^{\mu} + \hat{n} \cdot \phi)\right)\right]$$

• $W[\mathcal{D}] \xrightarrow{\alpha \to 0} \exp(S_{\text{eff}}[\mathcal{D}_{\text{fus.}}]), \text{ where}$

•
$$S_{\text{eff}}[\mathscr{D}_{\text{fus}}] = \int d\sigma \sqrt{\hat{\gamma}} \left(a_0 + a_1 \hat{R} \dots \right) \mathbf{1}(\sigma) + \dots$$

$$= \int d\sigma \left(-\frac{a}{\alpha} - b\alpha + \dots \right) \mathbf{1}(\sigma) + \dots$$

α

Conclusions

- Can take a theory with 2 conformal defects, and view it as a theory with 1 conformal defect.
- Cool consequences of this work include:
 - Can do calculations in DCFTs with 2 defects, or a defect with a cusp
 - Operator asymptotics in DCFTs with one defect
 - Some cool geometry
 - Some applications to "spinning DCFTs"

Classifying Weyl Anomalies

- The Weyl anomaly is the variation of the effective action $W = -\log Z$ under an infinitesimal Weyl transformation $g_{\mu\nu}(x) \rightarrow (1 + 2\omega(x))g_{\mu\nu}(x)$.
- We use the following algorithm to find the most general possible Weyl anomaly:
 - 1. Propose the most general Weyl anomaly $\delta_{\omega}W$ that is consistent with dimensional analysis; SO(d-p)
 - 2. Impose Wess–Zumino consistency, i.e. since Weyl transformations commute, $\delta_{\omega_1}\delta_{\omega_2}W = \delta_{\omega_2}\delta_{\omega_1}W$;

3. Find the part of this anomaly that is scheme-independent.

• [Chalabi, Herzog, O'Bannon, Robinson, Sisti (2022)]

Weyl Anomalies for a Spinning Line Defect in 3D

- We take a line defect Σ in a 3-dimensional bulk \mathcal{M}_3 , and along the defect, we introduce a unit vector field normal to the defect, $v^{\mu}(\sigma)$ to parameterize the breaking of SO(2) to the trivial subgroup.
- We also introduce the unit vector field tangent to the defect $x^{\mu}(\sigma)$, and $w_{\mu}(\sigma) = \sqrt{g} \varepsilon_{\mu\nu\rho} v^{\nu}(\sigma) x^{\rho}(\sigma)$ (Fig. 5.).
- We find that the only scheme-independent term that can appear in a Weyl anomaly is $\delta_{\omega}W = a \int_{\Sigma} d\sigma \sqrt{\bar{g}} \left(x^{\nu}(\sigma) w_{\mu}(\sigma) \bar{\nabla}_{\nu} v^{\mu}(\sigma) \right) \omega(\sigma).$
- If we consider the Weyl anomaly associated with uniform rescalings, we find that the Weyl anomaly is proportional to the self-linking number of the defect,

•
$$\frac{1}{4\pi} \int_{\Sigma} d\sigma \sqrt{\bar{g}} \left(x^{\nu}(\sigma) w_{\mu}(\sigma) \bar{\nabla}_{\nu} v^{\mu}(\sigma) \right).$$

• For a surface defect in a 4-dimensional bulk, and we find 12 scheme-independent terms.