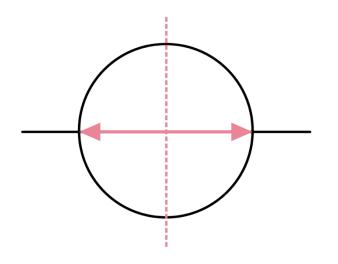


The Need for Event-Shape Resummation

University of Sussex YTF 2024

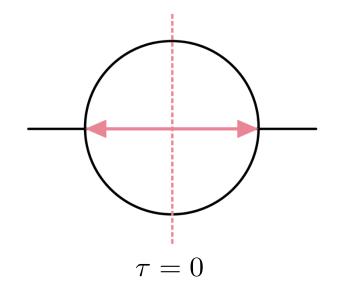
Darcy Peake | Andrea Banfi

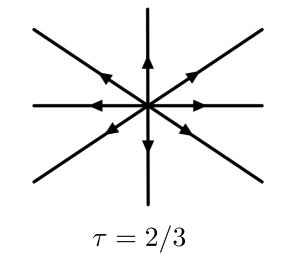

UNIVERSITY OF SUSSEX

EVENT SHAPE VARIABLES

1. Useful for precise measurements of the strong coupling

2. Event-shapes are a class of observables examining specific features of the 'shape' of a hadronic final state


3. Look at different event-shapes depending on the specific process



THRUST

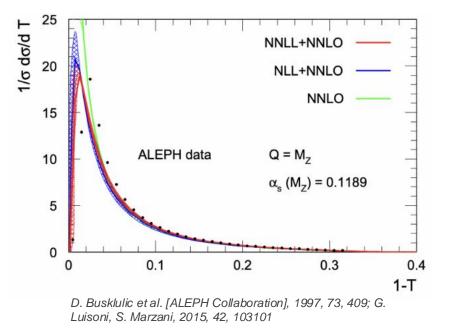
$$e^+e^- \rightarrow 2 \text{ jet}$$

IRC SAFETY

- 1. Event-shapes are IRC safe observables
- 2. Inclusive observables: cancellation of divergences between real and finite results
- 3. Exclusive observables can still have divergences, and therefore must be IRC safe to avoid infinities

 E_2 محور محو

IRC Safety is the idea that an additional soft and/or collinear emission will not affect the value of the observable



RESUMMATION

- 1. Large logarithms of the form $L = \ln \frac{1}{v}$ appear at every order in perturbation theory
- 2. Resummation reorders terms to prioritise higher powers of logarithms rather than lower powers of α_s

$$\Sigma(v) \simeq \exp\{Lg_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \cdots\}$$

$$\alpha_s^n L^{n+1}(LL) \qquad \alpha_s^n L^n(NLL) \qquad \alpha_s^n L^{n-1}(NNLL)$$

Thank you

We are looking at the NNLL accuracy in our upcoming paper

