Triboson production and interplay with associated Higgs production

Marek Schönherr

IPPP, Durham University

THE ROYAL SOCIETY

Outline

1 Introduction

- 2 The trilepton channel
- **3** The $e^+\mu^+jj$ channel

4 Conclusions

Introduction

1 Introduction

2 The trilepton channel

3 The $e^+\mu^+jj$ channel

4 Conclusions

Triboson production

Current status

- NLO QCD corrections known for all on-/off-shell processes

Binoth, Ossola, Papadopoulos, Pittau '08

Campanario, Hankele, Oleari, Prestel, Zeppenfeld '09

- **NLO QCD** on-shell WWW + 0, 1j multijet merged

Höche, Krauss, Pozzorini, MS, Thompson, Zapp '14

- NNLO QCD for $\gamma\gamma\gamma$

Chawdhry, Czakon, Mitov, Poncelet '19

Kallweit, Sotnikov, Wiesemann '20

- corrections are typically large due to gluon-induced channels opening
- beware of single-top topologies in some channels in 5F

Triboson production

Current status

- NLO EW corrections known for all on-shell processes

Nhung et.al '13, Yong-Bai et.al '15, '16; Hong et.al '16

Dittmaier, Huss, Knippen '17

- NLO EW corrections for off-shell WWW in all trilepton channels

MS '18

- **NLO EW** corrections for off-shell *WWW* in triple pole approx.

Dittmaier, Knippen, Schwan '19

- large photon-induced corrections, can compensate EW Sudakov corrections (depending on jet veto)

1 Introduction

2 The trilepton channel

3 The $e^+\mu^+jj$ channel

4 Conclusions

Introduction 000	The trilepton channel ○●○○○○○	The $\mathrm{e}^+\mu^+\mathrm{jj}$ channel 0000000000	Conclusions 00

MS '18

- contribs from 0 SFOS $(e^-\mu^+\mu^+\bar{\nu}\nu\nu)$, 1 SFOS $(e^-e^+\mu^+\bar{\nu}\nu\nu)$ and 2 SFOS $(e^-e^+e^+\bar{\nu}\nu\nu)$ processes, and $e \leftrightarrow \mu$

0 SFOS	$e^-\mu^+\mu^+ar{ u}_e u_\mu u_\mu$	WWW	
1 SFOS	$e^-e^+\mu^+ar{ u}_e u_e u_\mu$	WWW + WZZ	
	$e^-e^+\mu^+ar{ u}_\mu u_\mu u_\mu$	WZZ	
	$e^-e^+\mu^+ar u_ au u_ au$	WZZ	
2 SFOS	$e^-e^+e^+\bar{ u}_e u_e u_e$	WWW + WZZ	
	$e^-e^+e^+ar{ u}_{\mu/ au} u_{\mu/ au} u_e$	WZZ	

Introduction 000	The trilepton channel	The $e^+\mu^+jj$ channel 0000000000	Conclusions 00

MS '18

- contribs from 0 SFOS $(e^-\mu^+\mu^+\bar{\nu}\nu\nu)$, 1 SFOS $(e^-e^+\mu^+\bar{\nu}\nu\nu)$ and 2 SFOS $(e^-e^+e^+\bar{\nu}\nu\nu)$ processes, and $e \leftrightarrow \mu$

0 SFOS $e^{-}\mu^{+}\mu^{+}\bar{\nu}_{e}\nu_{\mu}\nu_{\mu}$ $WH[\rightarrow 2\ell 2\nu]$ WWW 1 SFOS $e^-e^+\mu^+\bar{\nu}_e\nu_e\nu_\mu$ WWW + WZZ $WH[\rightarrow 2\ell 2\nu]$ $e^-e^+\mu^+\bar{\nu}_\mu\nu_\mu\nu_\mu$ $WH[\rightarrow 2\ell 2\nu]$ WZZ $e^-e^+\mu^+\bar{\nu}_{\tau}\nu_{\tau}\nu_{\mu}$ WZZ $WH[\rightarrow 2\ell 2\nu]$ 2 SFOS $e^-e^+e^+\bar{\nu}_e\nu_e\nu_e$ WWW + WZZ $WH[\rightarrow 2\ell 2\nu]$ $e^-e^+e^+\bar{\nu}_{\mu/\tau}\nu_{\mu/\tau}\nu_e$ W77 $WH[\rightarrow 2\ell 2\nu]$

Introduction 000	The trilepton channel ○●○○○○○○	The $\mathrm{e}^+\mu^+\mathrm{jj}$ channel 00000000000	Conclusions 00

MS '18

- contribs from 0 SFOS $(e^-\mu^+\mu^+\bar{\nu}\nu\nu)$, 1 SFOS $(e^-e^+\mu^+\bar{\nu}\nu\nu)$ and 2 SFOS $(e^-e^+e^+\bar{\nu}\nu\nu)$ processes, and $e \leftrightarrow \mu$

0 SFOS	$e^-\mu^+\mu^+ar{ u}_e u_\mu u_\mu$	WWW	$WH[ightarrow 2\ell 2 u]$	WZ
1 SFOS	$e^-e^+\mu^+ar{ u}_e u_e u_\mu$	WWW + WZZ	$WH[ightarrow 2\ell 2 u]$	WZ
	$e^-e^+\mu^+ar{ u}_\mu u_\mu u_\mu$	WZZ	$WH[ightarrow 2\ell 2 u]$	WZ
	$e^-e^+\mu^+ar u_ au u_ au$	WZZ	$WH[ightarrow 2\ell 2 u]$	WZ
2 SFOS	$e^-e^+e^+\bar{ u}_e u_e u_e$	WWW + WZZ	$WH[ightarrow 2\ell 2 u]$	WZ
	$a^{-}a^{+}a^{+}\overline{u}$	11/77	$M/H = 2/2 \sqrt{1}$	11/7

 $/\tau^{\nu}\mu/\tau^{\nu}e$

Selection	Cut	Value	
general	$p_{\mathrm{T}}(\ell)$	[20 GeV, ∞)	
	y(ℓ)	[-2.5, 2.5]	lepton
	$\Delta R(\ell,\ell)$	$[0.2,\infty)$	ucceptunce
$p_{ m T}^{\prime}>20{ m GeV}$	$\Delta \phi({\it p}_{ m T},\ell\ell\ell)$	$[\frac{5}{6}\pi,\pi]$	jet veto
1, 2 SFOS	¢́⊤	[50 GeV, ∞)	M/Z voto
	$m_{\ell\ell}^{\scriptscriptstyle { m SFOS}}$	$[0,70{ m GeV}]\wedge [100{ m GeV},\infty)$	VVZ VELO

- cuts idealised from WWW ATLAS '16
- scale choice: $\mu = \sum m_{T,i}^W$ ambiguous in all channels, EW corrections largely scale independent: choose $\mu_R = \mu_F = 3 m_W$
- use NNPDF31_nlo_as_0118_luxqed for reliable γPDF

The trilepton channel – on-shell decomposition

$m_{\ell\ell\ell\nu\nu\nu} = m_{WWW}$

- due to presence of 3ν no W forced on-shell
- on-shell WWW not dominating for incl. xsec
- large cross section from WH, WZ negligible
- at larger *m*_{WWW} contribs from double (single) resonant

The trilepton channel – on-shell decomposition

- on-shell approximation reasonable for $m_{\ell\ell\ell}$
- large single and double resonant contribs for MET

The trilepton channel – on-shell decomposition

- on-shell approximation reasonable for lepton p_{T}
- moderate impact of double (single) resonant contribs

The trilepton channel – 0, 1, 2 SFOS decomposition

MS arXiv:1806.00307

The trilepton channel – 0, 1, 2 SFOS decomposition

MS arXiv:1806.00307

The trilepton channel - 0, 1, 2 SFOS decomposition

MS arXiv:1806.00307

- 1 Introduction
- 2 The trilepton channel
- **3** The $e^+\mu^+jj$ channel
- **4** Conclusions

Introduction 000	The trilepton channel	The e ⁺ µ ⁺ jj channel ○●○○○○○○○○	Conclusions OO

Denner, Pellen, MS, Schumann '24

Introduction 000	The trilepton channel	The e ⁺ µ ⁺ jj channel ○●○○○○○○○○	Conclusions OO

Denner, Pellen, MS, Schumann '24

Introduction 000	The trilepton channel	The e ⁺ µ ⁺ jj channel ○●○○○○○○○○	Conclusions OO

Denner, Pellen, MS, Schumann '24

The $e^+\mu^+jj$ channel @ LO

Fiducial phase space

- contribution of individual topologies varies throughout phase space, follow WWW ATLAS '22
- $p_{\mathrm{T},\ell} > 20 \text{ GeV}, \ |y_\ell| < 2.5$ $m_{\ell\ell} \in [40, 400] \text{ GeV}$

$$\begin{array}{l} p_{\rm T,j} > 20 \ {\rm GeV}, \ |y_{\rm j}| < 4.5 \\ m_{\rm jj} \in [0, 160] \ {\rm GeV}, \ |\Delta y_{\rm jj}| < 1.5 \end{array}$$

	$\mathcal{O}(\alpha^6)$	$\mathcal{O}(\alpha_s \alpha^5)$	$\mathcal{O}(\alpha_s^2 \alpha^4)$	sum
$\sigma_{\sf LO}[\sf fb]$	0.78549(9)	0.00732(1)	0.25925(3)	1.05206(9)
$\sigma/\sigma_{ m LO}^{ m sum}$ [%]	74.7	0.7	24.6	100

 $pp \rightarrow e^+ \nu_e \mu^+ \nu_\mu jj$

d /dm_{j1j2} [fb/GeV]

10-

NLO

The $e^+\mu^+jj$ channel @ NLO

- $\mathcal{O}(\alpha_s^3 \alpha^4)$ pure QCD corr.
- $\mathcal{O}(\alpha_s^2 \alpha^5)$ both EW and QCD corr.
- $\mathcal{O}(\alpha_s \alpha^6)$ both QCD and EW corr.
- $\mathcal{O}(\alpha^7)$ pure EW corr.

The $e^+\mu^+jj$ channel @ NLO

- $\mathcal{O}(\alpha_s^3 \alpha^4)$ pure QCD corr.
- $\mathcal{O}(\alpha_s^2 \alpha^5)$ both EW and QCD corr.
- $\mathcal{O}(\alpha_s \alpha^6)$ both QCD and EW corr.
- $\mathcal{O}(\alpha^7)$ pure EW corr.

-
$$\mu_{\rm R}=\mu_{\rm F}=\sum m_{\rm T}^W$$
 NNPDF31_nlo_as_0118_luxqed

	$\mathcal{O}(\alpha^7)$	$\mathcal{O}(\alpha_{s}\alpha^{6})$	$\mathcal{O}(\alpha_s^2 \alpha^5)$	$\mathcal{O}(\alpha_s^3 \alpha^4)$	sum
$\delta\sigma$ [fb]	-0.035(1)	0.305(1)	-0.0032(3)	0.2260(3)	0.493(2)
$\delta\sigma/\sigma_{ m LO}^{ m sum}$ [%]	-3.4	29.0	-0.30	21.5	46.9

The $e^+\mu^+jj$ channel @ NLO

- $\mathcal{O}(\alpha_s^3 \alpha^4)$ pure QCD corr.
- $\mathcal{O}(\alpha_s^2 \alpha^5)$ both EW and QCD corr.
- $\mathcal{O}(\alpha_s \alpha^6)$ both QCD and EW corr.
- $\mathcal{O}(\alpha^7)$ pure EW corr.

-
$$\mu_{\rm R}=\mu_{\rm F}=\sum m_{\rm T}^W$$
 NNPDF31_nlo_as_0118_luxqed

	$\mathcal{O}(\alpha^7)$	$\mathcal{O}(\alpha_{s}\alpha^{6})$	$\mathcal{O}(\alpha_s^2 \alpha^5)$	$\mathcal{O}(\alpha_s^3 \alpha^4)$	sum
$\delta\sigma$ [fb]	-0.035(1)	0.305(1)	-0.0032(3)	0.2260(3)	0.493(2)
$\delta\sigma/\sigma_{ m LO}^{ m sum}$ [%]	-3.4	29.0	-0.30	21.5	46.9

The $e^+\mu^+jj$ channel @ NLO

- $\mathcal{O}(\alpha_s^3 \alpha^4)$ pure QCD corr.
- $\mathcal{O}(\alpha_s^2 \alpha^5)$ both EW and QCD corr.
- $\mathcal{O}(\alpha_s \alpha^6)$ both QCD and EW corr.
- $\mathcal{O}(\alpha^7)$ pure EW corr.

-
$$\mu_{\rm R}=\mu_{\rm F}=\sum m_{\rm T}^W$$
 NNPDF31_nlo_as_0118_luxqed

	$\mathcal{O}(\alpha^7)$	$\mathcal{O}(\alpha_{s}\alpha^{6})$	$\mathcal{O}(\alpha_s^2 \alpha^5)$	$\mathcal{O}(\alpha_s^3 \alpha^4)$	sum
$\delta\sigma$ [fb]	-0.035(1)	0.305(1)	-0.0032(3)	0.2260(3)	0.493(2)
$\delta\sigma/\sigma_{ m LO}^{ m sum}$ [%]	-3.4	29.0	-0.30	21.5	46.9

- LO inteference $\mathcal{O}(\alpha_{s}\alpha^{5})$ (mostly) negligible, define

EW production $\mathcal{O}(\alpha^{6}) + \mathcal{O}(\alpha_{s}\alpha^{6}) + \mathcal{O}(\alpha^{7})$ QCD production $\mathcal{O}(\alpha_{s}^{2}\alpha^{4}) + \mathcal{O}(\alpha_{s}^{3}\alpha^{4}) + \mathcal{O}(\alpha_{s}^{2}\alpha^{5})$

- caveat:

 $\mathcal{O}(\alpha_s^2 \alpha^5)$ is still partially QCD corr. to LO interference \rightarrow neglect $\mathcal{O}(\alpha_s \alpha^6)$ is still partially EW corr. to LO interference \rightarrow decompose further

- LO inteference $\mathcal{O}(\alpha_{s}\alpha^{5})$ (mostly) negligible, define

EW production $\mathcal{O}(\alpha^{6}) + \mathcal{O}(\alpha_{s}\alpha^{6}) + \mathcal{O}(\alpha^{7})$ QCD production $\mathcal{O}(\alpha_{s}^{2}\alpha^{4}) + \mathcal{O}(\alpha_{s}^{3}\alpha^{4}) + \mathcal{O}(\alpha_{s}^{2}\alpha^{5})$

- caveat:
 - $\mathcal{O}(\alpha_s^2 \alpha^5)$ is still partially QCD corr. to LO interference \rightarrow neglect $\mathcal{O}(\alpha_s \alpha^5)$ is still partially EW corr. to LO interference \rightarrow decompose further

- LO inteference $\mathcal{O}(\alpha_{s}\alpha^{5})$ (mostly) negligible, define

EW production $\mathcal{O}(\alpha^6) + \mathcal{O}(\alpha_s \alpha^6) + \mathcal{O}(\alpha^7)$ QCD production $\mathcal{O}(\alpha_s^2 \alpha^4) + \mathcal{O}(\alpha_s^3 \alpha^4) + \mathcal{O}(\alpha_s^2 \alpha^5)$

- caveat:

 $\mathcal{O}(\alpha_s^2 \alpha^5)$ is still partially QCD corr. to LO interference \rightarrow neglect $\mathcal{O}(\alpha_s \alpha^6)$ is still partially EW corr. to LO interference \rightarrow decompose further

- LO inteference $\mathcal{O}(\alpha_{s}\alpha^{5})$ (mostly) negligible, define

EW production $\mathcal{O}(\alpha^{6}) + \mathcal{O}(\alpha_{s}\alpha^{6}) + \mathcal{O}(\alpha^{7})$ QCD production $\mathcal{O}(\alpha_{s}^{2}\alpha^{4}) + \mathcal{O}(\alpha_{s}^{3}\alpha^{4}) + \mathcal{O}(\alpha_{s}^{2}\alpha^{5})$

- caveat:

 $\mathcal{O}(\alpha_s^2 \alpha^5)$ is still partially QCD corr. to LO interference \rightarrow neglect $\mathcal{O}(\alpha_s \alpha^6)$ is still partially EW corr. to LO interference \rightarrow decompose further

The $e^+\mu^+jj$ channel – on-shell decomposition @ LO

Sample decomposition

- approximate off-shell result with incoherent sum of on-shell channels using spin-correlated decays in NWA Höche et.al '14
- different on-shell channels dominant in different regions,
- WWW nowhere $\gtrsim 70\%$

$\mathcal{O}(lpha^6)$	off shell	on shell	on-shell subprocess			
Process		sum	WWW	WH	WZ	VBS
$\sigma_{\sf LO}[\sf fb]$	0.7917	0.7738	0.4207	0.3265	$5 \cdot 10^{-7}$	0.0266
$\sigma/\sigma_{\rm LO}^{\rm off\ shell}$ [%]	100	97.7	53.1	41.2	$7 \cdot 10^{-5}$	3.3

The $e^+\mu^+jj$ channel – on-shell decomposition @ NLO

Sample composition

- WWW contrib reduced by 4.8%
- VBS contrib increased by 4.4%, large *K*-factor driven by collinear radiation off forward jet forming new low-m_{jj} pair
- note: QCD corrections to W
 ightarrow q ar q' decay not included here

$\mathcal{O}(\alpha^6 + \alpha_s \alpha^6)$	off shell	on shell	on-shell subprocess			
Process		sum	WWW	WH	WZ	VBS
K _{NLO}	1.42	1.40	1.29	1.38	2.21	3.25
$\sigma/\sigma_{ m NLO}^{ m off \ shell}$ [%]	100	96.2	48.3	40.2	$2 \cdot 10^{-6}$	7.7

The $e^+\mu^+jj$ channel – s/t-channel decomposition

Sample composition

- decompose according to s or t/uchannel jet production
 - *s* WWW + WH + WZ (coherent)
 - t∕u VBS
- otherwise completely off-shell

most partonic channels either s, t, or u, decompose remaining into incoherent sum, e.g.

$$\underbrace{\mathrm{ud}}_{|s+t|^2} \longrightarrow \underbrace{\mathrm{ud}}_{|s|^2} \to \underbrace{\mathrm{ud}}_{|s|^2} \to \underbrace{\mathrm{ud}}_{|s|^2} \to \underbrace{\mathrm{ud}}_{|s|^2} \to \underbrace{\mathrm{us}}_{|t|^2} \to \underbrace{\mathrm{us}}_$$

The $e^+\mu^+jj$ channel – s/t-channel decomposition

Sample composition

- decompose according to s or t/uchannel jet production
 - s WWW + WH + WZ (coherent)
 - t∕u VBS
- otherwise completely off-shell

$\mathcal{O} \alpha^{6} + \alpha_{\mathbf{s}} \alpha^{6}$	coherent	incoherent	subchannels	
Process	$ s + t/u ^2$	$ s ^2 + t/u ^2$	$ s ^2$	$ t/u ^2$
$\sigma_{\sf NLO}[\sf fb]$	1.091	1.084	0.998	0.086
$\sigma/\sigma_{\rm NLO}^{\rm off \; shell}$ [%]	100	99.4	91.5	7.9

- separate into QCD and EW production
- build on *s*-*t*-channel decomposition in EW production, removes EW divergences from $\mathcal{O}(\alpha_s \alpha^6)$ QCD corr. to EW prod. \rightarrow can use traditional MC@NLO QCD as implemented in SHERPA for parton-shower matching, include EW corrections through EW_{virt} approximation Höche, Krauss, MS, Siegert '11

Kallweit, Lindert, Pozzorini, MS '15

Three generators: (1) QCD prod., (2) s-ch. EW prod., (3) t-ch. EW prod.

Denner, Pellen, MS, Schumann '24

The $\mathrm{e}^+\mu^+\mathrm{jj}$ channel 00000000000

The $e^+\mu^+jj$ channel – MC@NLO predictions

- large beyond-NLO corrections around W resonance
- $\mathcal{O}(\alpha_s^2 \alpha^5)$ has s-channel W/g interference, spurious shape feature

The $e^+\mu^+jj$ channel 000000000

The $e^+\mu^+jj$ channel – MC@NLO predictions

- EW Sudakov correction for EW production well reproduced
- small corrections beyond NLO

Conclusions

- triboson signatures have to be computed off-shell due to their rich internal structure
- various resonant configurations present in (almost) all channels
 - always WWW and WH (WZ)
 - VBS in hadronic channels
 - WZZ in ≥ 1 OSSF channels
- a number of precision Monte-Carlo simulations for off-shell production exist and should be used for a reliable description
- QCD corrections are large, EW corrections are sizeable

Thank you!

Marek Schönherr

Triboson production and interplay with associated Higgs production