Heavy Hadron Spectroscopy

Standard Model at the LHC 2025

Simon Ghizzo University & INFN Genova on behalf of the CMS and LHCb collaborations

7 Apr. 2025

Physical motivations and analysis techniques

- \blacktriangleright Insight into a not yet fully understood corner of the SM \rightarrow confinement
- How are quarks bound inside the hadrons?
- Is the diquark a building block of the hadrons?
- ▶ Mass fit \rightarrow To extract properties of states, M and Γ but not J^P
- Amplitude analysis \rightarrow To measure J^P, mass, width and account for reflections

New hadrons at LHC

https://koppenburg.ch/particles.html

Selected recent results from CMS and LHCb

- Spectroscopy of conventional hadrons
 - ► LHCb Observation of a new charmed baryon decaying to $\Xi_c^+ \pi^- \pi^+$ [LHCb-PAPER-2024-055]
 - ► LHCb Observation of the doubly-charmed-baryon decay $\Xi_{cc}^{++} \rightarrow \Xi_c^0 \pi^+ \pi^+$ [LHCb-PAPER-2024-053]
 - LHCb Observation of muonic Dalitz decays of \(\chi_b\) mesons and precise spectroscopy of hidden-beauty states [JHEP 10 (2024) 122]
- Spectroscopy of exotic hadrons
 - LHCb Probing the nature of the $\chi_{c1}(3872)$ state using radiative decays [LHCb-PAPER-2024-015]
 - ▶ LHCb Search for the $B_c^+ \rightarrow \chi_{c1}(3872)\pi^+$ decay [LHCb-PAPER-2024-050]
 - ▶ LHCb Observation of the open-charm tetraquark state T_{cs0}^{*0} (2870) in the $B^- \rightarrow D^- D^0 K_s$ decay [LHCb-PAPER-2024-040]
 - ► LHCb [NOT DISCUSSED] Study of $D_{s1}(2460)^+ \rightarrow D_s^+ \pi^+ \pi^-$ in $B \rightarrow D^{(*)} D_s^+ \pi^+ \pi^-$ decays [LHCb-PAPER-2024-033]
 - CMS Observation of a family of all-charm tetraquark candidates at the LHC [CMS-PAS-BPH-24-003]

VELO: vertex detector, IP resolution of 15 + 29/ $\rho_T\,\mu m$

Tracking: momentum resolution of $\sigma_p/p \sim 0.5 - 1\%$ for 20-200 GeV

Particle ID: from calorimeters, muon chambers and RICH (PID($K \rightarrow K$) \sim 95% @misID rate($\pi \rightarrow K$) \sim 5%)

Hardware trigger: from calorimeters and muon chambers, $\sim 90\%$ efficiency

The LHCb Collaboration et al 2008 JINST 3 S08005 Int. J. Mod. Phys. A 30, 1530022 (2015)

LHCb detector during Run1 and Run2

7 Apr. 2025

Spectroscopy of conventional hadrons

Excited Ξ_c^0 and Ω_c^0 states

- Fifteen singly charmed baryon with L = 0, hundreds when considering excitations.
- Modelled as a heavy quark interacting with a light diquark.
- Universal mass difference? $m(\Omega_c(3050)^0 - m(\Xi_c(2923)^0) \simeq 125 \text{ MeV}$ $m(\Omega_c(3065)^0 - m(\Xi_c(2939)^0) \simeq 125 \text{ MeV}$ $m(\Omega_c(3090)^0 - m(\Xi_c(2965)^0) \simeq 125 \text{ MeV}$
- ► Is $\equiv_c(2880)$ the SU(3) partner of the $\Omega_c(3000)$?
- Where is the partner of $\Omega_c(3120)$?

 $\Omega_{c}^{**0} \rightarrow \Xi_{c}^{+}K^{-}$

Phys. Rev. Lett. 118, 182001 (2017)

Phys.Rev.D 104 (2021) 9, L091102

 $\Xi_{c}^{**0} \rightarrow \Lambda_{c}^{+}K^{-}$

10.1103/PhysRevLett.124.222001

 $B^- \rightarrow \Lambda_c^+ \Lambda_c^- K^-$

7 Apr. 2025

Physical Review D 108, 012020 (2023)

New charmed baryon decaying to $\Xi_c^+ \pi^- \pi^+$ [LHCb-PAPER-2024-055]

- ► Excited Ξ_c^+ states reconstructed via the intermediate decay $\Xi_c(2645)^0\pi^+$, with $\Xi_c(2645)^0 \rightarrow \Xi_c^+\pi^-$ and $\Xi_c^+ \rightarrow \rho K^-\pi^+$
- Four excited Ξ_c^+ states observed with high significance
- First observation of Ξ_c(2923)⁺ with significance 10 σ, consistent with isospin partner of Ξ_c(2923)⁰
- ▶ New decay mode $\Xi_c(3080)^+ \rightarrow \Xi_c(2645)^0 \pi^+$ with significance 5.4 σ

New charmed baryon decaying to $\Xi_c^+\pi^-\pi^+$ [LHCb-PAPER-2024-055]

Masses and widths measured for the four observed states

State	Mass [MeV]	Г [MeV]
$\Xi_{c}(2815)^{+}$	$\textbf{2816.65} \pm \textbf{0.03}_{stat} \pm \textbf{0.03}_{syst} \pm \textbf{0.23}_{ext}$	$2.07\pm0.08_{stat}\pm0.12_{syst}$
$\Xi_{c}(2923)^{+}$	$2922.8\pm0.3_{stat}\pm0.5_{syst}\pm0.2_{ext}$	$5.3\pm0.9_{stat}\pm1.4_{syst}$
$\Xi_{c}(2970)^{+}$	$2968.6\pm0.5_{stat}\pm0.5_{syst}\pm0.2_{ext}$	$31.7 \pm 1.7_{stat} \pm 1.9_{syst}$
$\Xi_{c}(3080)^{+}$	$3076.8\pm0.7_{stat}\pm1.3_{syst}\pm0.2_{ext}$	$6.8\pm2.3_{stat}\pm0.9_{syst}$

- No signal of $\Xi_c(2940)^+$
- Widths of $\Xi_c(2970)^+$ and $\Xi_c(2965)^0$ not consistent
 - Two different excited states and not isospin partners

State	Mass [MeV]	「 [MeV]
$\Xi_c(2965)^0$	$2964.88\pm0.26_{stat}\pm0.14_{syst}\pm0.14_{ext}$	$14.1\pm0.9_{stat}\pm1.3_{syst}$
$\Xi_{c}(2970)^{+}$	$2968.6\pm0.5_{stat}\pm0.5_{syst}\pm0.2_{ext}$	$31.7 \pm 1.7_{stat} \pm 1.9_{syst}$

- Doubly charmed baryon Ξ⁺⁺_{cc} observed in the Λ⁺_c K⁻π⁺π⁺ mass spectrum by LHCb in 2017 [Phys.Rev.Lett.119,112001(2017)]
- Only three decay modes observed so far, additional measurements essential to better understand the decay dynamics of doubly charmed baryons
- ► $\equiv_{cc}^{++} \rightarrow \equiv_{c}^{0} \pi^{+} \pi^{+}$ mediated by the same $c \rightarrow su\bar{d}$ weak transition of $\equiv_{cc}^{++} \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+}$ and $\equiv_{cc}^{++} \rightarrow \equiv_{c}^{(')+} \pi^{+}$

- Significant structure can be seen in the $\Xi_c^0 \pi^+ \pi^+$ invariant mass distribution at a mass of approximately 3620 MeV/ c^2
- No significant structure in the wrong-sign sample or in the sample with Ξ⁰_c candidates in the mass sidebands ([2401, 2441] ∪ [2501, 2541] MeV/c²)

The significance of the $\Xi_{cc}^{++} \to \Xi_{c}^{0}\pi^{+}\pi^{+}$ signal is estimated to be above 10 σ Most of the systematics cancel in the ratio of branching fractions

$$\mathcal{R} = \frac{B(\Xi_{cc}^{++} \to \Xi_{c}^{0}\pi^{+}\pi^{+}) \times B(\Xi_{c}^{0} \to pK^{-}K^{-}\pi^{+})}{B(\Xi_{cc}^{++} \to \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+}) \times B(\Lambda_{c}^{+} \to pK^{-}\pi^{+})} = 0.105 \pm 0.014_{stat} \pm 0.007_{syst}$$

$$\frac{B(\Xi_{cc}^{++} \to \Xi_{c}^{0}\pi^{+}\pi^{+})}{B(\Xi_{cc}^{++} \to \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+})} = 1.37 \pm 0.18_{stat} \pm 0.09_{syst} \pm 0.35_{ext}$$

$$\frac{B(\Xi_{cc}^{++} \to \Lambda_{c}^{0}K^{-}\pi^{+}\pi^{+})}{B(\Xi_{cc}^{++} \to \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+})} = 1.37 \pm 0.18_{stat} \pm 0.09_{syst} \pm 0.35_{ext}$$

$$\frac{B(\Xi_{cc}^{++} \to \Xi_{c}^{0}\pi^{+}\pi^{+})}{B(\Xi_{cc}^{++} \to \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+})} = 1.37 \pm 0.18_{stat} \pm 0.09_{syst} \pm 0.35_{ext}$$

Simon Ghizzo

SM@LHC 2025

7 Apr. 2025

Binned extended maximum-likelihood fit for very large data sample (bin width = 1 MeV)

 Experimental knowledge of hidden beauty states is still more limited compared to the charmonium system

[JHEP 10 (2024) 122]

- First observation of the muonic Dalitz decays of the *χ*_{b1}(1*P*), *χ*_{b2}(1*P*), *χ*_{b1}(2*P*), and *χ*_{b2}(2*P*) mesons to the *Υ*(1*S*) state and measurement of the masses
- Decay modes

 $\Upsilon(3S) \rightarrow (\Upsilon(2S) \rightarrow \mu^+ \mu^-) \pi^+ \pi^-$ and $\Upsilon(2S) \rightarrow (\Upsilon(1S) \rightarrow \mu^+ \mu^-) \pi^+ \pi^-$ to make precise measurements of the Υ masses and mass splittings

Spectroscopy of hidden-beauty states

$$\begin{array}{l} m_{\Upsilon(1S)} = 9460.37 \pm 0.01_{\text{stat}} \pm 2.85_{\text{syst}} \ \text{MeV}/c^2 \\ m_{\Upsilon(2S)} = 10023.28 \pm 0.03_{\text{stat}} \pm 0.12_{\text{syst}} \pm 0.09_{\text{ext}} \ \text{MeV}/c^2 \\ m_{\Upsilon(3S)} = 10355.28 \pm 0.03_{\text{stat}} \pm 0.04_{\text{syst}} \pm 0.48_{\text{ext}} \ \text{MeV}/c^2 \end{array}$$

$$\begin{array}{l} m_{\Upsilon(1S)_{PDG}} = 9460.4 \pm 0.1 \ {\rm MeV}/c^2 \\ m_{\Upsilon(2S)_{PDG}} = 10023.4 \pm 0.5 \ {\rm MeV}/c^2 \\ m_{\Upsilon(3S)_{PDG}} = 10355.1 \pm 0.5 \ {\rm MeV}/c^2 \end{array}$$

Competitive and in agreement with PDG

Spectroscopy of hidden-beauty states

- Performed separately for the $\chi_b(1P)$ and $\chi_b(2P)$ regions
- Significance above 5σ for all the states

$$\begin{array}{l} m_{\chi_{b1}(1P)} = 9892.50 \pm 0.26_{\rm stat} \pm 0.10_{\rm syst} \pm 0.10_{\rm ext} \ {\rm MeV}/c^2 \\ m_{\chi_{b2}(1P)} = 9911.92 \pm 0.29_{\rm stat} \pm 0.11_{\rm syst} \pm 0.10_{\rm ext} \ {\rm MeV}/c^2 \\ m_{\chi_{b1}(2P)} = 10253.97 \pm 0.75_{\rm stat} \pm 0.22_{\rm syst} \pm 0.09_{\rm ext} \ {\rm MeV}/c^2 \\ m_{\chi_{b2}(2P)} = 10269.67 \pm 0.67_{\rm stat} \pm 0.22_{\rm syst} \pm 0.09_{\rm ext} \ {\rm MeV}/c^2 \end{array}$$

• Most precise measurements of $\chi_{b1}(1P)$

[JHEP 10 (2024) 122]

LHCb

 $9 \, \text{fb}^{-1}$

10.3

 $[GeV/c^2]$

Spectroscopy of exotic hadrons

- ► $\chi_{c1}(3872)$ first exotic charmonium-like state observed by Belle in 2003 in $B^+ \rightarrow J/\psi \pi^+ \pi^- K^+$ decay [Phys.Rev.Lett.91:262001,2003]
- Quantum numbers J^{PC} = 1⁺⁺, mass close to the DD̄* threshold, surprisingly narrow width
- Its nature still under debate: conventional \(\car{\car{2}}\mathbf{P}_1\), DD* molecular state, tetraquark, hybrid, vector glueball, or mixed?

Radiative decays of $\chi_{c1}(3872)$

- $\chi_{c1}(3872) \rightarrow \psi(2S)\gamma$ and $\chi_{c1}(3872) \rightarrow J/\psi\gamma$ used to probe the nature of the $\chi_{c1}(3872)$
- $\chi_{c1}(3872) \rightarrow \psi(2S)\gamma$ observed for the first time using the decay $B^+ \rightarrow \chi_{c1}(3872)K^+$ at 4.8 σ (6.0 σ) in Run1 (Run2)

$$\mathcal{R}_{\psi\gamma} = \frac{\Gamma_{\chi_{c1}(3872) \rightarrow \psi(2S)\gamma}}{\Gamma_{\chi_{c1}(3872) \rightarrow J/\psi\gamma}} = 1.67 \pm 0.21_{stat} \pm 0.12_{syst} \pm 0.04_{ext}$$

Radiative decays of $\chi_{c1}(3872)$

[LHCb-PAPER-2024-015]

- As a general rule, $\mathcal{R}\psi\gamma \gtrsim 1$ is expected if the $\chi_{c1}(3872)$ state has a dominant conventional charmonium component, whereas a pure $D\bar{D}^*$ molecular hypothesis would predict $\mathcal{R}_{\psi\gamma} \ll 1$
- The measured ratio strongly indicates a sizeable compact charmonium or tetraquark component within the χ_{c1}(3872) state [PhysRevD 75,014005]

Search for $B_c^+ \rightarrow \chi_{c1}(3872)\pi^+$ decay

Enhancement of \(\chi_c1(3872)\) production interpretation from ATLAS measurement of the production cross-section in pp collisions [JHEP 01 (2017)117]

- ► Search for the decay $B_c^+ \rightarrow \chi_{c1}(3872)\pi^+$ with $\chi_{c1}(3872) \rightarrow J/\psi\pi^+\pi^-$
- ▶ Using the normalization channel: $B_c^+ \rightarrow \psi(2S)\pi^+$

[LHCb-PAPER-2024-050]

SM@LHC 2025

7 Apr. 2025

Search for $B_c^+ \rightarrow \chi_{c1}(3872)\pi^+$ decay

[LHCb-PAPER-2024-050]

No $B_c^+ \rightarrow \chi_{c1}(3872)\pi^+$ decay mode observed as signal. Limit at 90% (95%) CL is set using the CLs method:

Simon Ghizzo

SM@LHC 2025

7 Apr. 2025

21 / 26

Open-charm tetraquark in $B^- \rightarrow D^- D^0 K_s$ decay [LHCb-PAPER-2024-040]

- Amplitude analysis of the $B^- \rightarrow D^- D^0 K_e^0$ decay
- Spin-0 open-charm tetraquark T_{cs0}^{*0} (2870) observed in the D⁰K⁰ final state for the first time
- \blacktriangleright Significance of 5.3 σ

7 Apr. 2025

Open-charm tetraquark in $B^- \rightarrow D^- D^0 K_s$ decay [LHCb-PAPER-2024-040]

- Mass, width, spin-parity and flavor content consistent with those of the T^{*0}_{cs0}(2870) observed in the B[−] → D[−]D⁺K[−] decay [Phys.Rev.D102, 112003 (2020)]
- ▶ No significant T_{cs}^{*0} states with $J^P = 1^-$ or charmonium-like tetraquarks observed

$$\begin{array}{l} \mathsf{m}(\mathit{T}_{cs0}^{*0}(2870)) = 2883 \pm 11_{\mathrm{stat}} \pm 8_{\mathrm{syst}} \ \mathsf{MeV}/\mathit{C}^2 \\ \mathsf{\Gamma}(\mathit{T}_{cs0}^{*0}(2870)) = 87_{-47_{\mathrm{stat}}}^{+22_{\mathrm{stat}}} \pm 17_{\mathrm{syst}} \ \mathsf{MeV} \\ \mathsf{FF}(\mathit{T}_{cs0}^{*0}(2870) \rightarrow \mathit{D}^0 \mathit{K}_{\mathrm{S}}^0) = (2.6 \pm 1.2_{\mathrm{stat}} \pm 0.4_{\mathrm{syst}})\% \end{array}$$

SM@LHC 2025

Observation of a family of all-charm tetraquark candidates@CMS[CMS-PAS-BPH-24-003]

- Extension of study on three structures, X(6600), X(6900), and X(7100) in the J/ψ J/ψ channel [Science Bulletin 65 (2020) 1983]
- > All three structures established with a significance well above 5 σ
- ► Interference among the three structures implies common J^{PC} → family of states?

Simon Ghizzo

SM@LHC 2025

Conclusions

- Analysing new Run 3 data right now
- Increased integrated luminosity, improved detector, better sensitivity to exotics (higher efficiency hadronic trigger)
- More investigation of observed states:
 - Confirm states in different channels
 - Measure J^P, study lineshape and resonance parameters
- Many new states to explore:
 - Search for *bc* tetraquarks and pentaquark with beauty
 - Search for exotic flavour multiplets

New significant results expected soon!

7 Apr. 2025

Thanks for the attention!!!

New charmed baryon decaying to $\Xi_{c}^{+}\pi^{-}\pi^{+}$

Contribution	$\Xi_c(2815)^+$		$\Xi_c(2923)^+$		$\Xi_c(2970)^+$		$\Xi_c(3080)^+$	
Contribution	m	Γ	m	Γ	m	Г	m	Γ
RBW	0.00	0.02	0.09	1.12	0.15	0.55	0.02	0.68
Interference	0.00	0.01	0.53	0.70	0.44	1.05	1.26	0.65
Resolution	0.00	0.12	0.00	0.11	0.01	0.04	0.00	0.08
Background	0.00	0.01	0.01	0.32	0.11	1.51	0.04	0.08
Mom. scale	0.02		0.05		0.07		0.10	
Energy loss	0.02		0.02		0.02		0.02	
Sel. bias	0.02		0.02		0.02		0.02	
Total syst.	0.03	0.12	0.54	1.36	0.48	1.92	1.27	0.95
Stat.	0.03	0.08	0.28	0.87	0.46	1.68	0.72	2.28

Doubly-charmed-baryon decay $\Xi_{cc}^{++} \rightarrow \Xi_c^0 \pi^+ \pi^+$

Table 1: Yields and efficiencies of the signal and normalisation channels. The uncertainties on the yields are statistical only; the uncertainties on the efficiencies include only the contribution from the limited size of the simulation sample.

Category	$N_{\rm sig}$	$N_{\rm norm}$	$\varepsilon_{\rm sig} \ [\times 10^{-4}]$	$\varepsilon_{\rm norm}~[\times 10^{-4}]$
TIS	62 ± 9	1279 ± 55	1.159 ± 0.023	2.547 ± 0.090
exTOS	21 ± 6	461 ± 34	0.286 ± 0.011	0.624 ± 0.034

Source	TIS(%)	exTOS(%)
Fit model	1.1	1.1
Simulation sample size	4.2	6.6
Ξ_{cc}^{++} lifetime	1.0	1.0
Kinematic correction	1.2	1.2
Decay dynamics	2.0	2.0
Tracking	1.5	1.5
Particle identification	1.4	1.4
Hardware trigger		9.0
Hit error parametrisation	0.5	0.5
BDT efficiency correction	4.4	4.4
Total	7.0	12.5

Spectroscopy of hidden-beauty states

Parameter		Value
$N_{\Upsilon(1S)}$	$[10^3]$	14609.3 ± 6.7
$N_{\Upsilon(2S)}$	$[10^3]$	3729.1 ± 3.2
$N_{\Upsilon(3S)}$	$[10^{3}]$	1827.9 ± 2.3
$m_{\Upsilon(1S)}$	$[MeV/c^2]$	9460.37 ± 0.01
$m_{\Upsilon(2S)} - m_{\Upsilon(1S)}$	$[MeV/c^2]$	562.71 ± 0.04
$m_{\Upsilon(3S)} - m_{\Upsilon(2S)}$	$[MeV/c^2]$	331.77 ± 0.07

Table 1. Parameters of interest, yields N_{Υ} , masses and mass differences, from the fit to the dimuon mass spectra. The uncertainties are statistical only.

Parameter		Value
$N_{\Upsilon(2S)\to\Upsilon(1S)\pi^+\pi^-}$	$[10^{3}]$	88.55 ± 1.05
$N_{\Upsilon(3S)\rightarrow\Upsilon(2S)\pi^+\pi^-}$	$[10^3]$	1.46 ± 0.05
$m_{\Upsilon(2S)}$	$[\text{MeV}/c^2]$	10023.25 ± 0.03
$m_{\Upsilon(3S)}$	$\left[\text{MeV}/c^2\right]$	10355.28 ± 0.03

Table 3. Values for the parameters of interest, yields N and masses, from the fits to the $\Upsilon(1S)\pi^+\pi^$ and $\Upsilon(2S)\pi^+\pi^-$ mass spectra. Uncertainties are statistical only.

Source of evetomatic	Uncertainty $[MeV/c^2]$			
source of systematic	$m_{\Upsilon(1S)}$	$m_{\Upsilon(2S)} - m_{\Upsilon(1S)}$	$m_{\Upsilon(3S)} - m_{\Upsilon(2S)}$	
Momentum scale	2.8	0.17	0.10	
Energy loss correction	0.02			
Radiative corrections	0.13	0.03	0.03	
Fit model	0.35	0.10	0.02	
Sum in quadrature	2.85	0.20	0.10	

Table 2. Systematic uncertainties on the measurement of the $\Upsilon(1S)$ mass and mass differences from the analysis of the dimuon mass spectrum.

Source of systematic	Uncertainty $[keV/c^2]$			
Source of systematic	$m_{\Upsilon(2S)}$	$m_{\Upsilon(3S)}$	$m_{\Upsilon(3S)} - m_{\Upsilon(2S)}$	
Momentum scale	120	33	87	
Energy loss correction	20	20	_	
Radiative corrections	3	2	1	
Fit model	8	2	6	
Sum in quadrature	122	39	89	

Table 4. Systematic uncertainties on the measurement of the $\Upsilon(2S)$ and $\Upsilon(3S)$ mass parameters, and the mass difference from the analysis of the $\Upsilon(2S) \rightarrow \Upsilon(1S)\pi^+\pi^-$ and $\Upsilon(3S) \rightarrow \Upsilon(2S)\pi^+\pi^-$ decays.

Spectroscopy of hidden-beauty states

Source of gratematic	Uncertainty $[keV/c^2]$						
Source of systematic	$m_{\chi_{b1}(1P)}$	$m_{\chi_{b2}(1P)}$	$m_{\chi_{b1}(2P)}$	$m_{\chi_{b2}(2P)}$	$\delta m_{\chi_{\rm b}(1{\rm P})}$	$\delta m_{\chi_b(2P)}$	
Momentum scale	99	106	214	218	7	4	
Energy loss correction	20	20	20	20		_	
Radiative corrections	7	8	13	13	1		
Fit model	4	3	4	2	6	2	
Natural width			10	10			
Sum in quadrature	101	109	215	219	9	4	

Parameter		PDG'24 [57]	Recalculated
$m_{\chi_{b1}(1P)}$	$\left[\mathrm{MeV}/c^2\right]$	$9892.78\pm0.26\pm0.31$	$9892.92\pm0.33\pm0.50$
$m_{\chi_{b2}(1P)}$	$\left[\mathrm{MeV}/c^2\right]$	$9912.21\pm0.26\pm0.31$	$9912.35\pm0.29\pm0.50$
$m_{\chi_{b1}(2P)}$	$\left[\mathrm{MeV}/c^2\right]$	$10255.46\pm0.22\pm0.50$	
$m_{\chi_{b2}(2P)}$	$\left[\mathrm{MeV}/c^2\right]$	$10268.65\pm0.22\pm0.50$	
$\delta m_{\chi_{\rm b}(1{ m P})}$	$\left[\mathrm{MeV}/c^2\right]$	19.10 ± 0.25	19.42 ± 0.44
$\delta m_{\chi_{\rm b}(2{\rm P})}$	$\left[\mathrm{MeV}/c^2\right]$	13.10 ± 0.24	

Reference		$\mathscr{R}_{\psi\gamma}$	
T. Barnes and S. Godfrey	67	5.8	$c\overline{c}$
T. Barnes, S. Godfrey and S. Swanson	69	2.6	$c\overline{c}$
F. De Fazio	84	(1.64 ± 0.25)	$c\overline{c}$
BQ. Li and K. T. Chao	85	1.3	$c\overline{c}$
Y. Dong et al.	86	1.3 - 5.8	\overline{CC}
A. M. Badalian <i>et al.</i>	87	(0.8 ± 0.2)	\overline{CC}
J. Ferretti, G. Galata and E. Santopinto	88	6.4	$c\overline{c}$
A. M. Badalian, Yu. A. Simonov and B. L. G. Bakker	89	2.4	$c\overline{c}$
W. J. Deng et al.	90	1.3	$c\overline{c}$
F. Giacosa, M. Piotrowska and S. Goito	71	5.4	$c\overline{c}/vc$
E. S. Swanson	81	0.38%	$D\overline{D}^*$
Y. Dong et al.	86	0.33%	$D\overline{D}^*$
D. P. Rathaud and A. K. Rai	91	0.25	$D\overline{D}^*$
R. F. Lebed and S. R. Martinez	92	0.33%	$D\overline{D}^*$
B. Grinstein, L. Maiani and A. D. Polosa	93	3.6 %	$D\overline{D}^*$
FK. Guo et al.	82	$0.21(g_2'/g_2)^2$	$D\overline{D}^*$
D. AS. Molnar, R. F. Luiz and R. Higa	83	2 - 10	$D\overline{D}^*$
E. Cincioglu et al.	94	< 4	$D\overline{D}^*$
S. Takeuchi, M. Takizawa and K. Shimizu	95	1.1 - 3.4	$D\overline{D}^*$
B. Grinstein, L. Maiani and A. D. Polosa	93	$> (0.95^{+0.01}_{-0.07})$	$c\overline{c}q\overline{q}$

Table 2: Yields for the fit components determined from the simultaneous extended unbinned maximum-likelihood fit. Uncertainties are statistical only. The last row shows the statistical significance of the $B^+ \rightarrow \chi_{cl}(3872) \rightarrow \psi_{cl}(387) \gamma_{cl}(827) \gamma_{cl}$

Parameter		Data-taking period		
		Run 1	Run 2	
$\psi(2S)$	γK ⁺			
NB+-+(x+1(3872)-++(25)y)K		40 ± 8	63 ± 10	
NB++#C2S)K+X		567 ± 24	885 ± 29	
N _{comb}		55 ± 17	132 ± 19	
Ι/ψγ	K^+			
$N_{B^+ \rightarrow (\chi_{c1}(3872) \rightarrow 34py)K^+}$	$[10^{3}]$	0.43 ± 0.03	1.69 ± 0.05	
$N_{B\rightarrow J\Psi X}$	$[10^{3}]$	3.61 ± 0.11	18.72 ± 0.26	
N _{Xc1} (3872)K+	$[10^{3}]$	1.18 ± 0.06	5.53 ± 0.23	
Neomb	$[10^{8}]$	4.05 ± 0.11	17.46 ± 0.21	
$\mathscr{S}_{\chi_{c1}(3872) \mapsto \psi(28)\gamma}$		5.3 <i>a</i>	6.7σ	

Courses	Data-taking period		
Source	Run 1 [%]	Run 2 [%]	
Fit model			
Signal and combinatorial background	+5.7 -0.1	$^{+4.4}_{-2.0}$	
$B \rightarrow \psi(2S)K^+X$ background			
Parameterisation	+1.6 -4.9	+5.0	
Composition	0.9	1.9	
Simulation sample size	4.2	4.3	
Additional components	+0.6 -4.4	+1.2 -2.6	
B ⁺ meson kinematics	< 0.1	< 0.1	
Track reconstruction	< 0.1	< 0.1	
Photon reconstruction	1.1	1.1	
Kaon identification	1.0	1.3	
Trigger	1.1	1.1	
Data-simulation (dis)agreement	1.0	+1.0	
Simulation sample size for efficiency	2.3	1.4	
Total	+8.0 -0.2	+8.7 -7.9	

Search for $B_c^+ \rightarrow \chi_{c1}(3872)\pi^+$ decay

Table 1: Parameters of interest obtained from the simultaneous unbinned extended maximun-likelihood fit. In addition to statistical sources, the uncertainties also account for a systematic component due to the inclusion of $\ell_{\rm ADM}^{\rm (MSM)}$ in the fit.

Paramete	r	Value
$N_{B_{c}^{+}\rightarrow J/\Phi}$	π+π+π-	5049 ± 91
$N_{B_{c}^{+}\rightarrow\psi(2)}$	$S)\pi^+$	96 ± 11
$\mathcal{R}^{\chi_{c1}(3872)}_{\psi(2S)}$	^{e)} [%]	$-0.1^{+2.5}_{-2.1}$
$m_{\rm B^+}$	$[MeV/c^2]$	6274.15 ± 0.21
$m_{\psi(2S)}$	$[MeV/c^2]$	3686.05 ± 0.27
$\delta m_{X_{c\bar{c}}}$	$[MeV/c^2]$	185.54 ± 0.06
$f_{B_c^+}$		1.118 ± 0.021
$f_{X_{cc}}$		1.048 ± 0.004

Table 2: Relative systematic uncertainties (in %) for the efficiency ratio of the $B_c^+ \rightarrow \chi_{c1}(3872)\pi^+$ and $B_c^+ \rightarrow \psi(28)\pi^+$ decays. The total uncertainty is calculated as the quadratic sum of individual contributions.

$\sigma\left(\varepsilon_{\psi(2S)}^{\chi_{c1}(3872)}\right)$ [%]		
< 0.1		
0.2		
0.1		
1.1		
0.8		
1.5		
0.2		
2.0		

Open-charm tetraquark in $B^- \to D^- D^0 K_s$ decay

Source	Mass $[MeV/c^2]$	Width [MeV]	FF [%]
$f_{\rm s}$	0.9	1.7	0.06
Background PDF	0.6	2.1	0.09
Efficiency	0.6	3.2	0.11
Blatt–Weisskopf radii	1.2	0.6	0.02
D_{sJ}^{*-} masses and widths	4.0	1.7	0.01
Fit with $D_{s3}^{*}(2860)^{-}$	0.3	2.5	0.05
Fit with $T_{cs1}^{*}(2900)^{0}$	4.2	15.7	0.34
$D^-{-}K^0_{\rm S}$ K-matrix model	5.0	2.1	0.04
Total	8	17	0.4

Table 2: Measurements of the relative rates of decays into the $D^0\overline{K}^0$ and D^+K^- final states for $T^*_{oa}(2870)^0$ and $T^*_{a-1}(2800)^0$ states, $R_i(T^*_{a-0}(2870)^0)$ and $R_i(T^*_{a-1}(2800)^0)$, and the double first fraction ratio $R_F(D^*K^-)$, $R_F(D^*K^-)$, $R_F(D^*K^-)$, and third uncertainties are statistical, systematic, and due to the external inputs of $B^- \to D^-D^+K^-$ and $B^- \to D^-D^0K^0_{\rm S}$ branching fractions, respectively.

Observable	Result			
$R_{\rm I}(T^*_{cs0}(2870)^0)$	3.3	± 1.1	± 1.1	± 1.1
$R_{\rm I}(T^*_{cs1}(2900)^0)$	0.15	± 0.15	± 0.05	± 0.05
$R_{\rm FF}(D^0\overline{K}{}^0)/R_{\rm FF}(D^+K^-)$	0.044	1 ± 0.035	5 ± 0.020)

Observation of a family of all-charm tetraquark candidates @CMS

Figure 2: The two dimensional distribution of the double-dimuon masses for the final selection of $J/\psi J/\psi$ events in the 6–15 GeV four-muon mass range for the Run 2+3 data. The two $\mu^+\mu^-$ pairs are ordered by their total transverse momentum (p_T).