

Rare B decays

Disclaimer:

A selective set of results have been included in this talk.

Niladri Sahoo

On behalf of the LHCb and CMS collaborations University of Birmingham <u>niladri.sahoo@cern.ch</u>

b-quarks at the LHC

- Cross-section ~100 μb
- Millions of pairs produced per second
- and they fly ...

Why Rare B decays ?

- Rare decays of heavy mesons are FCNC (forbidden at tree level and thus highly suppressed)
- New particles may appear in loops of rare FCNC decays, affecting branching ratios and angular distributions;
- These particles wouldn't need to be produced on mass shell in such diagrams ⇒ access to very large masses.

FCNC effective hamiltonian described as operator product expansion, C_i being the Wilson coefficients, that encode the short-distance physics, and O_i the corresponding operators.

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i} \left[\underbrace{\mathcal{C}_i(\mu)\mathcal{O}_i(\mu)}_{\text{left-handed part}} + \underbrace{\mathcal{C}'_i(\mu)\mathcal{O}'_i(\mu)}_{\text{right-handed part}} \right] \begin{bmatrix} i=1,2 & \text{Tree} \\ i=3-6,8 & \text{Gluon penguin} \\ i=7 & \text{Photon penguin} \\ i=9,10 & \text{Electroweak penguin} \\ i=S & \text{Higgs (scalar) penguin} \\ i=P & \text{Pseudoscalar penguin} \end{bmatrix}$$

• Looking for deviation from SM prediction

$$\begin{cases} \mathcal{C}_i = \mathcal{C}_i^{SM} + & \mathcal{C}_i^{NP} \\ \mathcal{C}_i' = & & \mathcal{C}_i'^{NP} \end{cases}$$

Semi-leptonic b quark decays

$$b \to c \ell \nu$$

$$b \rightarrow s\ell\ell$$

Charged current:

- Tree-level
 - B order %
- Neutrino in final state (invisible)

 $\sum_{\substack{z^0/\gamma^*}} S$

u, c, t

Neutral current:

- Loop-suppressed:
 - \mathscr{B} order $10^{-7} 10^{-9}$
- Full reconstructed final state

Semi-leptonic b quark decays

• NP particles having mass > TeV can modify the measured decay rate

• Leptoquark (LQ), Z' model

B anomalies

B anomalies

Focus of this talk

 q^2 spectrum in $b \rightarrow sll$ transition

Experimental observables

Branching fractions

Simpler for LHC (focus on μ), but large theory uncertainties

Angular observables

Minimal FF uncertainties, though sensitive to charm loops LFU ratios

Clean !

Theory uncertainties ~ 1%, but electrons harder at the LHC

Increasing precision of the SM prediction

Experiments

pp collisions at 7, 8, 13 TeV

JINST 3 (2008) S08004

- Accelerator: LHC
- General purpose detector
- Period: 2011 till now
- Collected 165 fb⁻¹ data (Run 1 + 2)
- All species of B hadrons
- Plan: 3000 fb⁻¹ (by end of HL-LHC)
- Very busy environment
- Low trigger efficiency
- Better with muons
- No charged hadron PID

JINST 3 (2008) S08005

- Accelerator: LHC
- Forward-looking spectrometer
- Period: 2011 till now
- Collected 9 fb⁻¹ data (Run 1 + 2)
- All species of B hadrons
- Plan: 300 fb⁻¹ (by end of HL-LHC)
- Less busier environment than CMS
- Low trigger efficiency
- Better with tracks
- Excellent charged hadron PID

Branching Fractions

Similar pattern observed, decay rate too low!!

Fully leptonic decay B_s^0 $\rightarrow \mu^{+}\mu$

CMS

Golden channel for searching New Physics

- FCNC, highly suppressed in SM (helicity suppressed)
- Hadronic contributions are clear and well • known from Lattice QCD

BF results are consistent with SM predictions

140 fb⁻¹ (13 TeV) CMS 140 Candidates / (50 MeV/c² Full PDF Data $B^0 \to \mu^+ \mu^ B_s^0 \rightarrow \mu^+\mu^-$ ······ Semileptonic bkg ······ Combinatorial bkg 120 ----- Peaking bkg Entries / 0.05 GeV 09 00 08 00 09 00 40 20 4.9 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5 *m*_{μ⁺μ⁻} [GeV] [Phys. Lett. B 842 (2023)]

14

- Effective lifetime: in the SM, only the heavy mass eigenstate of the B_s^0 can decay to the $\mu^+\mu^-$ final state
- SM prediction $\tau_H = 1.624 \pm 0.009$ ps [PDG, PTEP 2022 (2022) 083C01]
- Overall, results well compatible with the SM predictions \rightarrow stability of C_{10}

Angular Analysis $B \to V(\to h^+h^-)\mu^+\mu^-$

Vector (spin 1)

▶ 3 polarisation amplitudes

Measure decay rate across three angles (Ω) and q^2

• perform in the bins of q^2

angular coefficients - function of amplitudes

 $\frac{d^{4}\Gamma(B^{0} \rightarrow K^{*0}\mu^{+}\mu^{-})}{d\hat{\Omega}dq^{2}} = \sum_{i} I_{i}(q^{2})f_{i}(\Omega)$ CP-averaged observables
Angular coefficients
Spherical harmonics

Example: $B^0 \to K^{*0} (\to K^+ \pi^-) \mu^+ \mu^-$

$$\frac{1}{d\Gamma/dq^{2}}\frac{d^{4}\Gamma}{dq^{2}d\cos\theta_{l}d\cos\theta_{K}d\phi} = \frac{9}{32\pi} \begin{bmatrix} \frac{3}{4}(1-F_{L})\sin^{2}\theta_{K} + F_{L}\cos^{2}\theta_{K} \\ + (\frac{1}{4}(1-F_{L})\sin^{2}\theta_{K} - F_{L}\cos^{2}\theta_{K})\cos 2\theta_{l} \\ + \frac{1}{2}P_{1}(1-F_{L})\sin^{2}\theta_{K}\sin^{2}\theta_{l}\cos 2\phi \\ + \sqrt{(1-F_{L})F_{L}}(\frac{1}{2}P_{4}'\sin 2\theta_{K}\sin 2\theta_{l}\cos\phi + \frac{P_{5}'\sin 2\theta_{K}\sin\theta_{l}\cos\phi}{1-\sqrt{(1-F_{L})F_{L}}(P_{6}'\sin 2\theta_{K}\sin\theta_{l}\sin\phi - \frac{1}{2}P_{8}'\sin 2\theta_{L}\sin2\theta_{l}\sin\phi) \\ + 2P_{2}(1-F_{L})\sin^{2}\theta_{K}\cos\theta_{l} - P_{3}(1-F_{L})\sin^{2}\theta_{K}\sin^{2}\theta_{l}\sin2\phi_{l}\sin\phi} \end{bmatrix}$$
One of the clean angular observables

LHCb PRL 125, 011802 (2020) CMS:PLB 781 (2018) 51754] ATLAS: JHEP 10 (2018) 047

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ from CMS

CMS

NEW

 $LHCb \ 9 \ fb^{-1}$

1.5

0.5

1.0

2.5

5.0

7.5

 $1.4359 < m_{pK} < 1.5900 \text{ GeV}/c^2$

 Ψ 1.5900 < m_{pK} < 1.7500 GeV/ c^2

 $1.7500 < m_{pK} < 2.2000 \text{ GeV}/c^2$ Φ 2.2000 < m_{pK} < 5.4100 GeV/ c^2

 $1.4359 < m_{pK} < 1.7500 \text{ GeV}/c^2$

12.5

15.0

17.5

10.0

- Measurement of branching fraction and angular observables in q^2 and m_{nK}
- () $\Lambda_h^0 \to J/\psi p K^-$ used as normalisation mode
- Decay rate fully described by 46 angular moments

• Results compatible with SM

Amplitude analysis in $B^0 \to K^{*0} \mu^+ \mu^-$

- Fit spectrum continuously to disentangle long (non-local) and short distance contributions
- Explicitly model non-local effects as a shift in $C_9^{eff,\lambda} = C_9 + Y_{q\bar{q},\lambda}(q^2)$

$$\begin{split} i &= \{\rho(770), \omega(782), \phi(1020), J/\psi, \psi(2S), \psi(3770), \psi(4040), \psi(4160)\} \\ j &= \{D\overline{D}, D^*\overline{D}, D^*\overline{D}^*\} \end{split}$$

IHEP 09 (2024) 026

- $Y_{q\bar{q},\lambda}$ includes one-particle states *i* and two-particles states *j*
- Direct access to $C_{9\tau}$ for the first time due to tau-scattering contribution

Angular Analysis $B^0 \to K^{*0}e^+e^-$

arXiv.2502.10291

- Angular observables extracted from 4D fit in central q² bin
- General good agreement with SM predictions **>** most precise measurement till date

 $q^2 \in [1.1, 6.0] \text{ GeV}^2/c^4$

Result summary

arXiv.2502.10291

[M. Algueró, A. Biswas, B.Capdevila, S. Descotes-Genon, J. Matias, EPJC 83 (2023) 7, 648

Results in agreement with SM

LFU test

arXiv.2502.10291

- Use the set of observables which are less sensitive to Form Factors
- Compare with the results from the muon fit (as in PRL 132 (2024) 131801)
- Construct LFU observables $Q_i = P_i^{\mu} P_i^{e}$
 - Good agreement with SM predictions
 - ▶ No strong sign of LFU violation observed

 $P_1 = \frac{2S_3}{(1 - F_{\rm L})} \; ,$ $P_2 = rac{2}{3} rac{A_{\rm FB}}{(1 - F_{\rm L})} \; ,$ $P_3 = rac{-S_9}{(1-F_{
m L})} \; ,$ $P_{4,5,6,8}' = \frac{S_{4,5,7,8}}{\sqrt{F_{\rm L}(1-F_{\rm L})}}$

Photon polarisation constraints from $B_s^0 \rightarrow \phi e^+ e^-$

[JHEP 2025 (2025) 47]

• Very low q^2 , angular observable sensitive to C_7, C_7'

• First observation of $B_s^0 \rightarrow \phi e^+ e^-$

4D fit

[JHEP 2025 (2025) 47]

25

Photon polarisation summary

[JHEP 2025 (2025) 47]

Angular analysis of $B_s^0 \rightarrow \phi e^+ e^-$

[LHCb-PAPER-2025-006, in preparation]

- Angular analysis of same decay mode in the *low, central and high* q^2 regions
- Results compatible with SM predictions and previous measurements on $B_s^0 \rightarrow \phi \mu^+ \mu^-$

- Yields: obtained from mass fit
- Efficiencies: obtained from corrected MC using data-driven techniques

• Validate LFU using resonant channels

• Single ratio: $r_{J/\psi} = 1$, double ratio: $R_{\psi(2S)} = 1$

LFU ratio with $B_s^0 \rightarrow \phi l^+ l^- (R_\phi)$

PRL 134 (2025) 121803

- First LFU ratio in B_s^0 decays, using 9 fb⁻¹ data
- Blind analysis, measurement performed in three q^2 regions
 - * Low $q^2: 0.1 < q^2 < 1.1 \text{ GeV}^2/c^4$
 - * Central q^2 : 1.1 < q^2 < 6.0 GeV²/c⁴
 - * High $q^2: 15.0 < q^2 < 19.0 \text{ GeV}^2/c^4$
- Validation: $r_{J/\psi} = 0.997 \pm 0.013$, $R_{\psi(2S)} = 1.010 \pm 0.026$
- Results in agreement with the SM predictions

$q^2 (\text{GeV}^2/c^4)$	R_{ϕ}^{-1}	$d\mathcal{B}(B_s^0 \to \phi e^+ e^-)/dq^2 \ (10^{-7} \ {\rm GeV}^{-2} \ c^4)$
$0.1 < q^2 < 1.1$ $1.1 < q^2 < 6.0$	$\begin{array}{c} 1.57^{+0.28}_{-0.25}\pm 0.05\\ 0.91^{+0.20}_{-0.19}\pm 0.05\end{array}$	$\begin{array}{c} 1.38 {}^{+0.25}_{-0.22} \pm 0.04 \pm 0.19 \pm 0.06 \\ 0.26 \pm 0.06 \pm 0.01 \pm 0.01 \pm 0.01 \end{array}$
$15.0 < q^2 < 19.0$	$0.85^{+0.24}_{-0.23}\pm0.10$	$0.39 \pm 0.11 \pm 0.04 \pm 0.02 \pm 0.02$

() $\mathscr{B}(B_s \to \phi e^+ e^-)$ agrees with SM and the measured $\mathscr{B}(B_s \to \phi \mu^+ \mu^-)$

FIRST

Mass fits

PRL 134 (2025) 121803

Another LFU ratio but using $B^+ \to K^+ \pi^+ \pi^- l^+ l^- (R_{K\pi\pi})$

 $(1) \frac{LHCb}{\Gamma HCp}$

arXiv.2412.11645

- Measurement performed in *central* $q^2 : 1.1 < q^2 < 7.0 \text{ GeV}^2/c^4$
- First observation of $B^+ \to K^+ \pi^+ \pi^- e^+ e^-$ mode (significance > 10 σ)
- Validation: $r_{J/\psi} = 1.033 \pm 0.017$, $R_{\psi(2S)} = 1.040 \pm 0.030$
- Results compatible with the SM predictions

Another LFU ratio but with $B^+ \to K^+ l^+ l^-$ at high $q^2 (R_K^{high})^{\text{LHCP}}$

• Measurement performed in high $q^2: q^2 > 14.3 \text{ GeV}^2/c^4$

• Most precise LFU test above the $\psi(2S)$ mass

• Validation: $r_{J/\psi} = 0.977 \pm 0.003 \pm 0.055$, $R_{\psi(2S)} = 1.002 \pm 0.009 \pm 0.004$

• Results compatible with the SM predictions

LHCb-PAPER-2024-056, in preparation

NEW

LFU status summary

1

Future prospects (CMS)

\mathcal{L} (fb $^{-1}$)	$N(B_s)$	$N(B^0)$	$\delta \mathcal{B}(B_s \to \mu \mu)$	$\delta \mathcal{B}(B^0 \to \mu \mu)$	$\sigma(B^0 \to \mu\mu)$	$\delta[\tau(B_s)]$ (stat-only)
300	205	21	12%	46%	$1.4 - 3.5\sigma$	0.15 ps
3000	2048	215	7%	16%	$6.3 - 8.3\sigma$	0.05 ps

FTR-18-033

PER AD ADDI ALTA

Future prospects (LHCb)

LHCb TDR-023

Conclusions & Outlook

- Rare *B* decays provide *stringent tests* of NP beyond SM
- Latest results with better precision *can neither confirm nor deny* them
- Updates with *more data and new modes* under development
- Most of the measurements are still statistically limited
 - * LHC Run 3 and beyond will tell us more!

Spare Slides

Other angular analysis measurements

$$B_s^0 \to \phi \mu^+ \mu^- \qquad E$$

$$B^+ \to K^{*+} \mu^+ \mu^-$$

 $B^0 \to K^{*0} \mu^+ \mu^-$

Same pattern, negative definitions in effective modelling

Photon polarisation constraints from $B_s^0 \rightarrow \phi e^+ e^-$

$$\begin{split} \frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma+\bar{\Gamma})}{\mathrm{d}\cos\theta_L\,\mathrm{d}\cos\theta_K\,\mathrm{d}\tilde{\varphi}} &= \frac{9}{32\pi} \left\{ \frac{3}{4} \left(1-F_{\mathrm{L}}\right) \sin^2\theta_K + F_{\mathrm{L}}\cos^2\theta_K \right. \\ &+ \left[\frac{1}{4} \left(1-F_{\mathrm{L}}\right) \sin^2\theta_K - F_{\mathrm{L}}\cos^2\theta_K \right] \cos 2\theta_L \\ &+ \frac{1}{2} \left(1-F_{\mathrm{L}}\right) A_{\mathrm{T}}^{(2)\sin^2}\theta_K \sin^2\theta_L \cos 2\tilde{\varphi} \\ &+ \left(1-F_{\mathrm{L}}\right) A_{\mathrm{T}}^{\mathcal{R}eCP}\sin^2\theta_K \cos\theta_L \\ &+ \frac{1}{2} \left(1-F_{\mathrm{L}}\right) A_{\mathrm{T}}^{\mathcal{I}mCP}\sin^2\theta_K \sin^2\theta_L \sin 2\tilde{\varphi} \right\} \,. \end{split}$$

$$\lim_{q^2 \to 0} A_{\mathrm{T}}^{(2)}(q^2) = \frac{2\left[\mathcal{R}e[C_7]\mathcal{R}e[C_7'] + \mathcal{I}m[C_7]\mathcal{I}m[C_7'] + \frac{y}{2}[(\mathcal{R}e[C_7])^2 - (\mathcal{I}m[C_7])^2]\right]}{(\mathcal{R}e[C_7])^2 + (\mathcal{I}m[C_7])^2}$$
$$\lim_{q^2 \to 0} A_{\mathrm{T}}^{\mathcal{I}mCP}(q^2) = \frac{2\left[\mathcal{R}e[C_7]\mathcal{I}m[C_7'] - \mathcal{I}m[C_7]\mathcal{R}e[C_7'] - y\mathcal{R}e[C_7]\mathcal{I}m[C_7]\right]}{(\mathcal{R}e[C_7])^2 + (\mathcal{I}m[C_7])^2},$$

 $y = \frac{\Delta \Gamma_s}{2\Gamma_s}$

Source of systematic	$A_{ m T}^{(2)}$	$A_{\mathrm{T}}^{\mathcal{I}mCP}$	$A_{\mathrm{T}}^{\mathcal{R}eCP}$	$F_{ m L}$
$\Delta\Gamma_s/\Gamma_s$	0.008	< 0.001	< 0.001	< 0.001
Corrections to simulation	0.002	< 0.001	< 0.001	0.010
Acceptance function modelling	< 0.001	< 0.001	0.001	0.002
Simulation sample size for acceptance	0.006	0.008	0.005	0.002
Background contamination	0.009	0.014	0.004	0.006
Angles resolution	-0.005	< 0.001		
Total systematic uncertainty	0.014	0.016	0.006	0.012
Statistical uncertainty	0.235	0.247	0.155	0.056

 R_{ϕ}

Angular analysis of
$$B^0 \to K^{*0}e^+e^-$$

$$\frac{1}{\mathrm{d}(\Gamma + \overline{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \overline{\Gamma})}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \Big[\frac{3}{4} (1 - F_\mathrm{L}) \sin^2 \theta_K + F_\mathrm{L} \cos^2 \theta_K \\ + \frac{1}{4} (1 - F_\mathrm{L}) \sin^2 \theta_K \cos 2\theta_\ell \\ - F_\mathrm{L} \cos^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi \\ + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi \\ + \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi \\ + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi \Big]$$

Source	F_L	P_1	P'_4	P'_5	P_2	P'_6	P'_8	P_3
Comb and DSL backgrounds	0.69	0.87	0.49	0.61	0.95	0.24	0.81	0.71
Part. reco. background	0.21	0.17	0.14	0.22	0.20	0.06	0.07	0.16
Misid. had. background	0.38	0.57	0.18	0.26	0.34	0.41	0.17	0.36
Effective acceptance	0.39	0.49	0.52	0.51	0.55	0.62	0.50	0.40
Signal mass modelling	0.26	0.16	0.14	0.18	0.31	0.06	0.06	0.15
J/ψ backgrounds	0.18	0.13	0.06	0.11	0.29	0.04	0.04	0.12
S-wave component	0.35	0.10	0.18	0.11	0.29	0.21	0.01	0.20
B^+ veto	0.50	0.41	0.28	0.37	0.52	0.22	0.21	0.37
Fit bias	0.01	0.00	0.04	0.03	0.08	0.02	0.02	0.02
Total	1.14	1.25	0.84	0.97	1.38	0.84	0.99	1.02

Charged current anomalies

New CMS result