

Collaborative Research Center TRR 257

Particle Physics Phenomenology after the Higgs Discovery Institut für Theoretische Teilchenphysik (KIT)

CP violation, B mixing and lifetimes

Ulrich Nierste, Karlsruhe Institute of Technology

KIT Center Elementary Particle and Astroparticle Physics (KCETA) Institute for Theoretical Particle Physics (TTP)

www.kit.edu

Outline

Flavour in a nutshell
 B-B
 mixing: β and β_s

 B-B
 mixing: width difference

 Summary and outlook

Flavour in a nutshell

Standard Model at the LHC 2025, Durham, 8 April 2025.

CP violation, B mixing and lifetimes

Flavour physics

studies transitions between different fermions.

Standard Model: from Higgs Yukawa interaction

encoded in Cabibbo-Kobayashi-Maskawa (CKM) matrix:

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \simeq \begin{pmatrix} 0.96 & 0.23 & 0.004e^{-i\gamma} \\ -0.23 & 0.96 & 0.040 \\ 0.009e^{-i\beta} & -0.04e^{i\beta_s} & 1.0 \end{pmatrix}$$

Charge-parity (CP) violating quantities involve $\gamma \approx 66^{\circ}$, $\beta \approx 23^{\circ}$, $\beta_s \approx 1.1^{\circ}$.

 β and β_s are calculable in term of γ , the KM phase.

4 Standard Model at the LHC 2025, Durham, 8 April 2025.

CP violation, B mixing and lifetimes

Flavour physics

Best suited: Flavour-changing neutral current (FCNC) processes like $b \rightarrow s, b \rightarrow d, c \rightarrow u, \mu \rightarrow e$.

5 Standard Model at the LHC 2025, Durham, 8 April 2025.

CP violation, B mixing and lifetimes

6 Standard Model at the LHC 2025, Durham, 8 April 2025.

CP violation, B mixing and lifetimes

Ulrich Nierste

Flavour physics

In FCNC processes several suppression factors pile up:

electroweak loop

small elements of the Cabibbo-Kobayashi-Maskawa matrix $|V_{ts}| \simeq |V_{ch}| = 0.04$, $|V_{td}| = 0.01$

possible GIM suppression factor $(m_c^2 - m_u^2)/M_W^2$ (in Kaon FCNCs) or $(m_{\nu_3}^2 - m_{\nu_1}^2)/M_W^2$ (in $\mu \to e\gamma$)
possible balicity suppression by a m^2/M_W^2 in

possible helicity suppression by e.g. m_{μ}^2/M_W^2 in $B_{sd} \rightarrow \mu^+ \mu^-$

BSM mass reach

Flavour physics probes virtual effects of new heavy particles coupling to quarks, with a mass reach of

a few TeV in tree-level decays like for $b \to c\tau\bar{\nu}$, a few tens of TeV in FCNC decays like $b \to s\ell^+\ell^-$, and a few hundreds of TeV in $B-\bar{B}$ mixing.

BSM mass reach

Flavour physics probes virtual effects of new heavy particles coupling to quarks, with a mass reach of

a few TeV in tree-level decays like for $b \to c\tau\bar{\nu}$, a few tens of TeV in FCNC decays like $b \to s\ell^+\ell^-$, and a few hundreds of TeV in $B-\bar{B}$ mixing.

FCC-hh fansflavour physicsflavour physicistsFCC-ee: 10^{13} Z bosons are a perfect b factory!

$B-ar{B}$ mixing: eta and eta_s

Standard Model at the LHC 2025, Durham, 8 April 2025.

CP violation, B mixing and lifetimes

$B-\bar{B}$ mixing

• $B_d - \bar{B}_d$ mixing and $B_s - \bar{B}_s$ mixing

```
\left(\begin{array}{c} |B_q\rangle \\ |\bar{B}_q\rangle \end{array}\right) \text{ involves the } 2 \times 2
```

mass matrix *M* (from boxes with one or two tops)

- decay matrix Γ (from box without top)
- $|\Gamma_{12}| \ll |M_{12}|$
- two mass eigenstates with mass difference

 $\Delta m \simeq 2 |M_{12}|$ equals $B - \overline{B}$ oscillation frequency

CP violation, B mixing and lifetimes

B oscillations and CP violation

Consider time-dependent CP asymmetry for B_d decay into CP eigenstate f_{CP} : tagged as \bar{B}_d at t = 0 $a_{\rm CP}(B_d(t) \to f_{\rm CP}) \equiv \frac{\Gamma(\bar{B}_d(t) \to f_{\rm CP}) - \Gamma(B_d(t) \to f_{\rm CP})}{\Gamma(\bar{B}_d(t) \to f_{\rm CP}) + \Gamma(B_d(t) \to f_{\rm CP})}$ $= -A_{CP}^{\dim,B_d \to f_{CP}} \cos(\Delta mt) - A_{CP}^{\min,B_d \to f_{CP}} \sin(\Delta mt)$ direct CP asymmetry mixing-induced CP asymmetry

Mixing-induced CP violation

Golden modes: only one decay amplitude: $A_{\rm CP}^{\rm dir} = 0$ and $A_{\rm CP}^{\rm mix} = \pm \sin(\phi_M - 2\phi_f)$, where ϕ_M is the CP phase of M_{12} (box diagram) and ϕ_f is the CP phase of the decay amplitude. $\blacksquare B_d \to J/\psi K_S: \phi_M = \arg[(V_{tb}V_{td}^*)^2] = 2\beta$ • $B_s \rightarrow J/\psi\phi$: $\phi_M = \arg[(V_{tb}V_{ts}^*)^2] = -2\beta_s$ • in both decays: $\phi_f = \arg(V_{cb}V_{cs}^*) = 0$, so that $A_{CP}^{\text{mix}} = \pm \sin(2\beta_{(s)})$

Penguin pollution

■ $A_{CP}^{mix}(B_d \rightarrow \psi K_S) = 0.709 \pm 0.011$ (all charmonium modes) (HFLAV) 1.6% precision! ■ $A_{CP}^{mix}(B_s \rightarrow J/\psi \phi) = -0.060 \pm 0.014$ (HFLAV)

• Yet these $b \rightarrow c\bar{c}s$ modes are not completely golden: Penguin pollution, second amplitude with $V_{ub}V_{us}^*$ interferes with tree amplitude.

$$\frac{|V_{ub}V_{us}|}{|V_{cb}V_{cs}|} = 0.022.$$
 Relevant with today's precision?

Penguin pollution

Two ways to estimate penguin pollution:

Use $b \rightarrow c\bar{c}d$ data to constrain penguin/tree ratio, employing $|V_{ub}V_{ud}| = 0.5 \gg 0.02$ and using approximate U-spin $V_{ch}V_{cd}$ symmetry (linking strange to down) of QCD. M. Barel, K. De Bruyn, R. Fleischer, E. Malami, *J.Phys.G* 48 (2021) 6, 065002 Works for $B_d \to J/\psi K_s$, but not for $B_s \to J/\psi \phi$. Calculate penguin pollution in QCD with soft-collinear factorisation for both $b \rightarrow c\bar{c}d$ and $b \rightarrow c\bar{c}s$, see

Ph. Frings, UN, M. Wiebusch, Phys.Rev.Lett. 115 (2015) 6, 061802

Penguin pollution starts to matter

Measurements (HFLAV):

 $A_{CP}^{dir}(B_d \to \psi K_S) = 0.004 \pm 0.012$ $A_{CP}^{\text{mix}}(B_d \to \psi K_S) = 0.709 \pm 0.011,$ $A_{\rm CP}^{\rm mix}(B_{\rm s} \to J/\psi\phi) = -0.060 \pm 0.014, \qquad A_{\rm CP}^{\rm dir}(B_{\rm s} \to J/\psi K^+ K^-) = 0.004 \pm 0.009$ • $A_{CP}^{\text{mix}} = \pm \sin(2\beta_{(s)}) + \Delta A_{CP}^{\text{mix}}$ with penguin pollution $\Delta A_{CP}^{\text{mix}}$. $b \rightarrow c\bar{c}d \mod$ $B_d \to J/\psi K_S \quad B_d \to \psi(2S)K_S \quad B_d \to J/\psi \pi^0$ Decay: $\max(|\Delta \phi_M^d|)$ 0.68° 0.74° N/Apolari- $\max(|\Delta A_{\rm CP}^{\rm mix}|) \quad 0.86 \cdot 10^{-2} \quad 0.94 \cdot 10^{-2}$ 0.18 sation $\max(|A_{CP}^{dir}|)$ $1.33 \cdot 10^{-2}$ $1.33 \cdot 10^{-2}$ 0.29 $B_s \to (J/\psi\phi)^0$ $B_s \to (J/\psi\phi)^{\perp}$ $B \to (J/\psi\phi)^{\parallel}$ $B_s \to J/\psi K_S$ Decay: N/A $\max(|\Delta \phi_M^s|)$ 0.97° 1.22° 0.99° $1.70 \cdot 10^{-2}$ $2.13 \cdot 10^{-2}$ $1.73 \cdot 10^{-2}$ $\max(|\Delta A_{\rm CP}^{\rm mix}|)$ 26 $\max(|A_{CP}^{dir}|)$ $1.89 \cdot 10^{-2}$ $2.35 \cdot 10^{-2}$ $1.92 \cdot 10^{-2}$ 27

15 Standard Model at the LHC 2025, Durham, 8 April 2025.

CP violation, B mixing and lifetimes

Direct CP violation in $B \rightarrow J/\psi \pi$

Isospin symmetry: $A_{CP}^{dir}(B_d \to J/\psi\pi^0) \simeq A_{CP}^{dir}(B^+ \to J/\psi\pi^+)$

LHCb, *Phys.Rev.Lett.* 134 (2025) 10, 101801: $A_{CP}^{dir}(B_d \to J/\psi\pi^+) - A_{CP}^{dir}(B_d \to \psi K^+) = (1.29 \pm 0.49 \pm 0.08) \times 10^{-2}$

deducing $A_{\rm CP}^{\rm dir}(B_d \to J/\psi \pi^+) = (1.51 \pm 0.51 \pm 0.08) \times 10^{-2}$

which is far more precise than our upper bound from 2015: $|A_{CP}^{dir}(B \rightarrow J/\psi \pi)| \leq 0.29$

16 Standard Model at the LHC 2025, Durham, 8 April 2025.

$B-\bar{B}$ mixing: width difference

17 Standard Model at the LHC 2025, Durham, 8 April 2025.

CP violation, B mixing and lifetimes

Width difference

P

- mass matrix M (from boxes with one or two tops)
- decay matrix Γ (from box without top)
- $|\Gamma_{12}| \ll |M_{12}|$
- two mass eigenstates with
 - mass difference $\Delta m \simeq 2 |M_{12}|$, equal to $B \bar{B}$ oscillation frequency

decay width difference
$$\Delta \Gamma = -\Delta m \operatorname{Re} \frac{\Gamma_{12}}{M_{12}}$$

CP violation, B mixing and lifetimes

Width difference

• QCD corrections to M_{12} are governed by $\alpha_s(m_t)$. \Rightarrow NLO sufficient

QCD corrections to Γ_{12} are governed by $\alpha_s(m_b)$. \Rightarrow need NNLO.

• $B_s - \bar{B}_s$ system: Precise measurement (HFLAV): $\Delta \Gamma_s = (0.082 \pm 0.005) \, \mathrm{ps}^{-1}$

Normalized while in the
$$B_d - \bar{B}_d$$
 system:
 $\Delta \Gamma_d = (0.001 \pm 0.007) \, {
m ps}^{-1}$

Sample 3-loop diagrams. Orange dot: effective four-quark operators describing *W* exchange

Effective operators with local $\overline{s}b\overline{s}b$ interaction.

(b)

Perturbative calculation: Wilson coefficient. To predict $\Delta\Gamma$ we also need hadronic matrix element à la $\langle \bar{B}_s | \bar{s}b\bar{s}b | B_s \rangle$.

CP violation, B mixing and lifetimes

0000

Ulrich Nierste

(c)

Standard Model at the LHC 2025, Durham, 8 April 2025.

21

CP violation, B mixing and lifetimes

Ulrich Nierste

$B_{\rm s} - B_{\rm s}$ width difference

 $B_{\rm s} - B_{\rm s}$ width difference

Prediction of Δm_s and $\Delta \Gamma_s$ suffer from the " V_{cb} puzzle".

Their ratio is essentially unaffected by uncertainties in CKM elements.

22 Standard Model at the LHC 2025, Durham, 8 April 2025.

CP violation, B mixing and lifetimes

Summary and Outlook

Standard Model at the LHC 2025, Durham, 8 April 2025.

CP violation, B mixing and lifetimes

Summary and Outlook

Flavour physics probes BSM physics associated with very heavy particles and is instrumental to formulate a physics case for future hadron colliders.

The current experimental precision in $A_{CP}^{mix}(B_d \to \psi K_S)$ and $A_{CP}^{mix}(B_s \to J/\psi\phi)$ calls for a better understanding of penguin pollution.

The width difference $\Delta\Gamma$ between the mass eigenstates of neutral *B* mesons is known to NNLO in QCD.

For further information on B lifetime calculations and measurements see J. Albrecht, F. Bernlochner, A. Lenz, A. Rusov, Eur.Phys.J.ST 233 (2024) 2, 359-390