Recent Experimental EFT Results in the Top Quark sector

Maryam Shooshtari Austrian Academy of Science (Hephy) On behalf of CMS and ATLAS Collaborations April 2025 - LHC@SM Workshop , Durham

SMEFT - a look into new physics

- No direct BSM observed → need a **model-independent** handle on subtle deviations
- SMEFT extends the SM with higher-dimensional operators:

$$\mathcal{L} = \mathcal{L}_{ ext{SM}}^{(4)} + \Sigma_{i,D} c_i^{(D)} rac{\mathcal{O}_i^{(D)}}{\Lambda^{D-4}}$$

• C_i: Wilson coefficients, encode strength of new physics

o Λ: New physics scale

• EFT series can be truncated at different orders with different dependence on the cut-off scales

Why the Top Quark?		^g volume t i 4-heavy quark operators
Heaviest: likely the first to feel BSM effects	(mostly ©) Unhadronized: spin and decay structure preserved	heavy quark +lepton operators
Couples to everything : gauge, Higgs, flavour sectors	Accessible in many ways: •Strong (tf, 4t), •electroweak (ttZ, tWZ), •rare (same-sign tt)	2-heavy 2-light quark operators

In this talk

EFT is a relatively general method. Each corner probes a distinct facet of the SMEFT landscape. This talk focuses on Top physics

- Flavour Structure
 - CMS Z-quark coupling in ttZ/WZ/ZZ
 - ATLAS lepton-quark coupling in $tt\ell\ell$
- **CP Violation** CMS CP-odd observables ttZ
- **Flavour Violation** ATLAS same-sign tops

Measurement of the flavour structure of

EFT couplings in multilepton final states

- **Goal:** Simultaneously constrain the **flavour structure** of dimension-6 EFT operators involving quark-Z couplings
- Investigating b → sℓℓ anomalies observed by LHCb that violate flavour universality
 Operator
 Definition
- Reparametrize 2 coefficients to make the interpretation cleaner :
 - $C_{\phi q}^{(-)} = C_{\phi q}^{(1)} C_{\phi q}^{(3)} \rightarrow \text{pure } Z$ coupling

 $\circ\ C_{\varphi q}{}^{(3)} \! \to \! includes \, W \ coupling \ effects$

• A RunII CMS analysis

perator	Definition	VVC	
$\mathit{0}_{_{\mathrm{\phi}\mathrm{q}}}^{(1)}$	$(\phi^{\dagger} \mathrm{i} \overleftrightarrow{D_{\mu}} \phi)(\overline{q} \gamma^{\mu} q)$	$\mathcal{C}^{(1)}_{arphi q}$	g elecele
$O^{(3)}_{ m \phi q}$	$(\phi^{\dagger} \mathrm{i} \overleftrightarrow{D_{\mu}}^{I} \phi)(\overline{q} \gamma^{\mu} \tau^{I} q)$	$\mathcal{C}^{(3)}_{arphi q}$	2 Josephane - Lillilli - Z
Ο _{φu}	$(\phi^{\dagger} i \overleftrightarrow{D_{\mu}} \phi) (\bar{u} \gamma^{\mu} u)$	$C_{\varphi u}$	g t
$O_{_{arphi d}}$	$(\phi^{\dagger} \mathrm{i} \overleftrightarrow{D_{\mu}} \phi) (\bar{d} \gamma^{\mu} d)$	$C_{arphi d}$	$q \longrightarrow W/Z$
O_W	$arepsilon^{ijk}W^{i u}_{\mu}W^{j ho}_{v}W^{k\mu}_{ ho}$	C _W	↓ ·
$O_{\widetilde{W}}$	$arepsilon^{ijk}\widetilde{W}_{\!\mu}^{i u}W_{\!v}^{j ho}W_{\! ho}^{k\mu}$	${\cal C}_{\widetilde{W}}$	\bar{q} — \prec Z

CMS-PAS-TOP-23-009

Analysis strategy:

- Each EFT operator is described by a 3×3 matrix. Only flavour diagonal entries are considered
- Divided into **heavy**(3rd generation) vs **light** (1st and 2nd generation)

• ttZ:

- Sensitive to 3rd gen via top radiation
- o but also to 1st/2nd gen via ISR diagrams!
- WZ, ZZ:
 - \circ Clean light-quark probes \rightarrow Z/W from initial-state u/d/s quarks.

138 fb⁻¹ (13 TeV)

- Final states: **Multilepton** (≥3e/µ), from **ttZ**, **WZ**, and **ZZ** production.
- Simultaneous likelihood fit across 3 SRs → flavour disentanglement of WC couplings.

Key Uncertainties:

- Lepton fake rates
 - Derived in single lepton regions
- Largest impacts from normalization uncertainties

- All WCs **consistent with the SM**(i.e., zero) within 95% CL.
- Most EFT analyses previously lumped all generations together or only considered top/bottom couplings
- This analysis distinguishes **first/second generation** from **third generation** couplings

Measurement of high-mass ttl+lproduction and Lepton Flavour Universality-inspired EFT interpretations

- New ATLAS measurement of off-shell $tt\ell^+\ell^-$
- Targets high dilepton mass: $m_{\ell\ell} > 101.2 \text{ GeV}$
- Lepton Flavour Universality (LFU) tested via flavour-separated and flavour-relative EFT fits
- Operators include lepton-quark currents categorized by chiralities: RR, RL, LR, LL (singlet & triplet)
- A Run II ATLAS analysis

Operator	Definition	WC	9
O_{te}	$(\overline{e_P}\gamma_\mu e_r)(\bar{t}\gamma^\mu t)$	C _{te}	<i>g</i>
O_{Qe}	$(\bar{Q}\gamma_{\mu}Q)(\overline{e_{P}}\gamma^{\mu}e_{r})$	C_{Qe}	
0 _{tl}	$(\overline{l_P}\gamma_\mu l_r)(\bar{t}\gamma^\mu t)$	C_{tl}	
$O_{Ql}^{(1)}$	$(\overline{l_P}\gamma_\mu l_r)(\overline{Q}\gamma^\mu Q)$	$C_{Ql}^{(1)}$	Γ
$O_{Ql}^{(3)}$	$(\overline{l_P}\sigma^i\gamma_\mu l_r)(\overline{Q}\sigma^i\gamma^\mu Q)$	$C_{Ql}^{(3)}$	
$O_{leQt}^{(1)}$	$(\overline{l_P^j}e_r)\varepsilon_{jk}(\overline{Q^k}t)$	$C_{leQt}^{(1)}$	9
$O_{leQt}^{(3)}$	$(\overline{l_P^j}\sigma_{\mu\nu}e_r)\varepsilon_{jk}(\overline{Q^k}\sigma^{\mu\nu}t)$	$C_{leQt}^{(3)}$	

Event Selection & Region Strategy:

- Signal: 3-lepton final states, ≥1 OSSF pair,
- Requires ≥3 jets (≥1 b-tag)
- Signal split into ee and $\mu\mu$ for LFU sensitivity
- High-mass bins used to maximize impact.
- 13 Control Regions :
 - Constrain dominant backgrounds: ttZ, WZ, photon conversions, fakes
 - \circ CRs binned in key observables (e.g., $p^{l1}{}_{T}$, $m_{T})$ for shape constraints

- 3 EFT fit modes:
 - Flavour-inclusive: shared WC across all lepton flavours
 - **Flavour-split**: independent WCs for e and μ
 - Flavour-relative: test C^e C^μ for LFU violation

EFT Results:

- No significant deviation from the SM
- Wilson coefficients consistent with zero across all fit strategies

SM Signal Measurement:

• $\mu(tt^-\ell^+\ell^-) = 1.0 + 0.4 - 0.5$

Search for CP violation in events with top quarks and Z bosons

- CP violation is essential to explain **baryon asymmetry**, yet the SM's only source is through CKM/PMNS phases—too small!
- This search targets **dimension-6 CP-odd EFT operators** (assuming that Wilson coefficients associated with CP-even operators are zero)
 - \circ c_{tZ}^I: modifies ttZ vertex
 - $\circ c_{tW}^{I}$: modifies tZq via tW coupling

• A RunII + early RunIII CMS analysis

Operator	Definition	WC probed here
$O_{uW}^{(ij)}$	$(\overline{q}_i \sigma^{\mu u} \tau^I u_j) \widetilde{\varphi} W^I_{\mu u}$	$C_{tW}^{I} = Im(C_{uW}^{(33)})$
$O_{uB}^{(ij)}$	$(\overline{q_i}\sigma^{\mu u}u_j)\widetilde{\varphi}B_{\mu u}$	$C_{tZ}^{I} = Im(-s_{W} C_{uB}^{(33)} + c_{W} C_{uW}^{(33)}$

ML vs the Universe — Observables that Know Physics

- CMS pioneers the use of CP-odd observables in this topology!
- Observables constructed via CP-equivariant function :

 $f_i(x) = g_i(x) - g_i(CP(x))$

- Two networks trained separately: $\circ g_{tZ}$, sensitive to $C_{tZ}{}^{I}$ $\circ g_{tW}$, sensitive to $C_{tW}{}^{I}$
- Each network output is a CP-odd score → should be symmetric under SM
- Asymmetry \neq SM \rightarrow a signature of new CPV physics

- Final state: 3-lepton + ≥2 jets (≥1 b-tag)
- include both signal and WZ events in the training ⇒ observables sensitive to
 - EFT effects present in the ttZ and tZq signal processes
 - o discriminate between them and WZ (the leading source of backgrounds)
- Key Uncertainties:
 - Statistical uncertainty dominates still systematics-limited in signal-rich regions
 theoretical uncertainty on signal processes

- Data mostly consistent with SM
- Observed 95% CL limits: $\circ -2.7 < C_{tW}^{I} < 2.5$ $\circ -0.2 < C_{tZ}^{I} < 2.0$
- CP violation sensitivity is mostly driven by the linear term (interference with SM)
- First-ever limits on the linear (interference) term of C_{tZ}^{I}
- CPV observables open a new EFT testing ground
- Complementary to CP-even fits

<u> JHEP 02 (2025) 084</u>

FXPFRIMENT

Search for same-charge top-quark pair production

- Same-sign tt / tf production:
 - Forbidden at LO in the Standard Model.
 - Only viable via ultra-rare $W^{\pm}W^{\pm}$ scattering $\rightarrow \sigma_{SM} \sim 10^{-15}$ pb.
 - Possible in **SMEFT** via **contact 4-fermion operators**.
- The EFT interpretation uses **flavour-universal** couplings
- A Run II ATLAS analysis

ML for EFT: Sorting Quarks from Quirks

- First ever ATLAS analysis with **NN-based operator discrimination**:
- Analysis workflow:
 - Step 1: Neural Network (NN^{SvsS}) to separate c_{tu} vs c_{Qu}-like signals
 - Step 2: Split by total lepton charge (++/--)
 - Step3 : Signal vs validation region based on the azimuthal angle between the two charged leptons
 - Step 4 : NN^{SvsB} used in SRs to reject background
 ⇒ 4 Signal Regions (tu/Qu, ++/--)

Background-Enriched Regions:

- ttW background (dominant): normalization constrained from the first bins of the SRs
- Dedicated CRs for irreducible backgrounds : \circ CR ttZ , CR VV
- Reducible backgrounds: Estimated using datadriven techniques
 - Seven CRs targeting Nonprompt leptons using lepton ID categories
 - \circ Separate CRs for photon conversions
- **Major Uncertainties**
- Statistical uncertainties
- ttW modelling

- Simultaneous binned likelihood fit across SRs and CRs
- No excess seen \rightarrow All WCs consistent with SM zero
- Upper limits at 95% CL:
 - $|c^{(1)}_{tu}| < 0.0068 \ (0.0071)$
 - $|c^{(1)}_{Qu}| < 0.020 \ (0.022)$
 - $|c^{(8)}_{Qu}| < 0.041 \ (0.046)$

Summary — Top Quark, Symmetries, and SMEFT

- Across ATLAS & CMS, we have new constrains on:
 - Flavour violation in four-fermion contact terms (same-sign tt)
 - **Z-quark flavour structure** in heavy vs light generation (ttZ, WZ, ZZ)
 - \circ Lepton-quark flavour structure in four-fermion operators (tt $\ell\ell$)
 - **CP-odd interactions** via direct collider observables (ttZ)
- All results are consistent with the SM
- ML contributes strongly
- Run 3 and HL-LHC will bring:
 - \circ More statistics for rare channels
 - $\circ\,$ Enhanced EFT sensitivity with ML-assisted observables
 - $\circ\,$ Combined fits with richer flavour resolution and operator correlations

Backup

 Input variables used for the CPequivariant neural networks, with the CP-transformed value given in the second row

Input variablesx $\vec{p}_{\ell^{Z+}}$ $\vec{p}_{\ell^{Z-}}$ $\vec{p}_{\ell^{W}}$ \vec{p}_{j_i} $Q_{\ell^{W}}$ \vec{p}_T^{miss} bscore_ieraCP(x) $-\vec{p}_{\ell^{Z-}}$ $-\vec{p}_{\ell^{Z+}}$ $-\vec{p}_{\ell^{W}}$ $-\vec{p}_{j_i}$ $-Q_{\ell^{W}}$ $-\vec{p}_T^{miss}$ bscore_iera