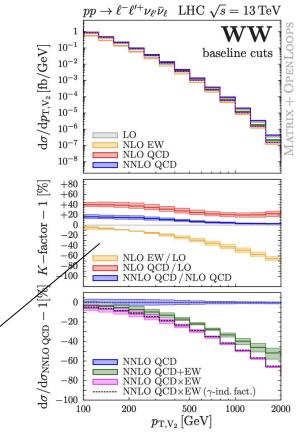
Electroweak corrections in the SMEFT: four-fermion operators at high energies

arXiv: 2412.16076

HF, Ken Mimasu, Davide Pagani, Claudio Severi, Eleni Vryonidou, Marco Zaro

Hesham El Faham

The University of Manchester

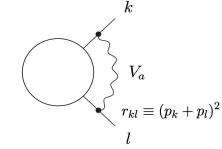


SM at the LHC, April 2025, Durham

Introduction

At high energies, EW corrections are not necessarily negligible compared to QCD ones

 \rightarrow at high energies, Sudakov logarithms can make EW corrections significant; domination of negative and large Sudakov logs.


Grazzini et al, 1912.0068; see <u>talk</u> by Pozzorini

EW Sudakov Logarithms (EWSL): physical origin

EWSLs arise from potential divergences regulated by the finite masses of the EW bosons

 \rightarrow soft divergences: low energy emission of gauge bosons

 \rightarrow collinear divergences: emission nearly parallel to an external particle

EW Sudakov Logarithms (EWSL): physical origin

EWSLs arise from potential divergences regulated by the finite masses of the EW bosons

 \rightarrow soft divergences: low energy emission of gauge bosons

 \rightarrow collinear divergences: emission nearly parallel to an external particle

Double logarithms (DL):
$$L(|r_{kl}|, M^2) \equiv \frac{\alpha}{4\pi} \log^2 \frac{|r_{kl}|}{M^2}$$
 soft and collinear regions
Single logarithms (SL): $l(|r_{kl}|, M^2) \equiv \frac{\alpha}{4\pi} \log \frac{|r_{kl}|}{M^2}$ soft/collinear region

 V_a

EWSL: universality at high energies

At high energies, EWSL are universal; with dependence on:

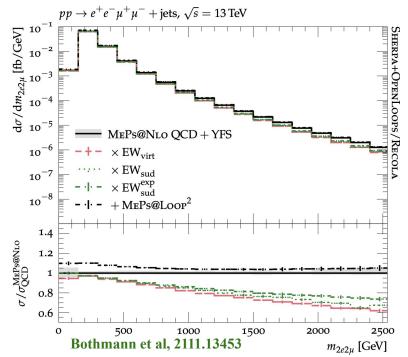
 \rightarrow quantum numbers of external particles

$$\mathcal{A}(s) = \mathcal{A}_{ ext{hard}} \cdot \mathcal{F}_{ ext{soft+collinear}}$$

 \rightarrow and the energy scale relative to the EW scale

The factorisation enables precision calculations \rightarrow the hard amplitude can be computed separately, with Sudakov logarithms included as a multiplicative correction

EWSL: why bother if we have the exact NLO EW?


EWSL have recently garnered renewed interest Sherpa, Bothmann et al, 2006.14635; OpenLoops, Lindert et al, 2312.07927

 \rightarrow EWSL are computationally faster and more stable than exact NLO EW corrections

 \rightarrow EWSL can be resummed e.g. Denner, Rode, 2402.10503

→ Born-like kinematics; simplified PS merging/matching Chiesa et al, 1305.6837; Bothmann et al, 2111.13453; Pagani et al, 2309.00452

 \rightarrow EWSL are universal at high energies

EWSL: algorithm by Denner and Pozzorini hep-ph/0010201 & hep-ph/0104127

One-loop leading logarithms in electroweak radiative corrections I. Results

A. Denner

Paul Scherrer Institut CH-5232 Villigen PSI, Switzerland

S. Pozzorini

Institute of Theoretical Physics University of Zürich, Switzerland

and

Paul Scherrer Institut CH-5232 Villigen PSI, Switzerland

Abstract:

We present results for the complete one-loop electroweak logarithmic corrections for general processes at high energies and fixed angles. Our results are applicable to arbitrary matrix elements that are not mass-suppressed. We give explicit results for 4-fermion processes and gauge-boson-pair production in e^+e^- annihilation.

EWSL: algorithm by Denner and Pozzorini hep-ph/0010201 & hep-ph/0104127

One-loop leading logarithms in electroweak radiative corrections I. Results

> A. DENNER Paul Scherrer Institut CH-5232 Villigen PSI, Switzerland

> > S. Pozzorini

Institute of Theoretical Physics University of Zürich, Switzerland

and

Paul Scherrer Institut CH-5232 Villigen PSI, Switzerland

Abstract:

We present results for the complete one-loop electroweak logarithmic corrections for general processes at high energies and fixed angles. Our results are applicable to arbitrary matrix elements that are not mass-suppressed. We give explicit results for 4-fermion processes and gauge-boson-pair production in e^+e^- annihilation.

In LA the corrections assume the form

$$\delta \mathcal{M}^{i_1 \dots i_n}(p_1, \dots, p_n) = \mathcal{M}_0^{i'_1 \dots i'_n}(p_1, \dots, p_n) \delta_{i'_1 i_1 \dots i'_n i_n},$$
(2.11)

i.e. they factorize as a matrix, and are split into various contributions according to their origin:

$$\delta = \delta^{\text{LSC}} + \delta^{\text{SSC}} + \delta^{\text{C}} + \delta^{\text{PR}}.$$
(2.12)

The leading and subleading soft-collinear logarithms are denoted by δ^{LSC} and δ^{SSC} , respectively, the collinear logarithms by δ^{C} , and the logarithms resulting from parameter renormalization, which can be determined by the running of the couplings, by δ^{PR} .

EWSL: algorithm by Denner and Pozzorini hep-ph/0010201 & hep-ph/0104127

One-loop leading logarithms in electroweak radiative corrections I. Results

> A. DENNER Paul Scherrer Institut CH-5232 Villigen PSI, Switzerland

> > S. Pozzorini

Institute of Theoretical Physics University of Zürich, Switzerland

and

Paul Scherrer Institut CH-5232 Villigen PSI, Switzerland

Abstract:

We present results for the complete one-loop electroweak logarithmic corrections for general processes at high energies and fixed angles. Our results are applicable to arbitrary matrix elements that are not mass-suppressed. We give explicit results for 4-fermion processes and gauge-boson-pair production in e^+e^- annihilation.

In LA the corrections assume the form

$$\delta \mathcal{M}^{i_1 \dots i_n}(p_1, \dots, p_n) = \mathcal{M}_0^{i'_1 \dots i'_n}(p_1, \dots, p_n) \delta_{i'_1 i_1 \dots i'_n i_n},$$
(2.11)

i.e. they factorize as a matrix, and are split into various contributions according to their origin:

$$\delta = \delta^{\text{LSC}} + \delta^{\text{SSC}} + \delta^{\text{C}} + \delta^{\text{PR}}.$$
(2.12)

The leading and subleading soft-collinear logarithms are denoted by δ^{LSC} and δ^{SSC} , respectively, the collinear logarithms by δ^{C} , and the logarithms resulting from parameter renormalization, which can be determined by the running of the couplings, by δ^{PR} .

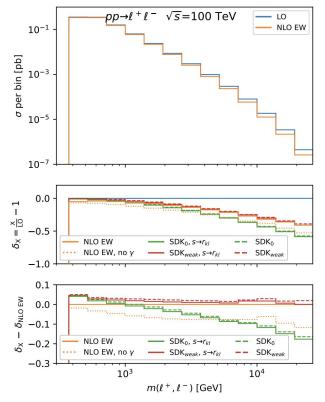
- at least one-helicity configuration *is* not mass suppressed
- split the EW logarithmic corrections into various contributions
- EWSL computed helicity-by-helicity

EWSL: numerical SM implementation Pagani and Zaro, hep-ph/2110.03714

Building upon the DP algorithm:

 \rightarrow automate the computation of EWSL for any process in MG5_aMC Alwall et al, 1405.0301 & Frixione et al, 1804.10017

 \rightarrow Introduce some additional features, e.g. angular dependence in logarithmic contributions


EWSL: numerical SM implementation Pagani and Zaro, hep-ph/2110.03714

Building upon the DP algorithm:

 \rightarrow automate the computation of EWSL for any process in MG5_aMC Alwall et al, 1405.0301 & Frixione et al, 1804.10017

 \rightarrow Introduce some additional features, e.g. angular dependence in logarithmic contributions

 \rightarrow approximate physical cross-section, i.e, virtual + real emissions; SDK_{weak}

SMEFT and EW corrections

 \rightarrow BSM effects are expected to manifest in the tails of distributions, i.e. at high energies

- \rightarrow SMEFT simulation as it stands, does not include EW corrections
- → EW corrections in SMEFT are challenging, only available for few simple processes µ decay: Pruna et al, 1408.3565;

H decay: Hartmann et al, 1505.02646 & 1507.03568; Ghezzi et al, 1505.03706; Gauld et al, 1512.02508; Dawson et al, 1801.01136 & 1807.11504; Dedes et al, 1805.00302 & 1903.12046; Cullen et al, 1904.06358 & 2007.15238;

Z/W pole obs.: Hartmann et al, 1611.09879; Dawson et al, 1808.05948 & 1909.02000;

Drell-Yan: Dawson et al, 2105.05852

.. and so the question is, can we make use of EWSL in SMEFT?

EWSL in SMEFT: introduction to our work

Leveraging previous works, we

 \rightarrow apply the DP algorithm to SMEFT; identify the domain of applicability

 \rightarrow study top-quark pair and Drell-Yan production at the LHC with 4F insertions

 \rightarrow assess the significance of those corrections in SMEFT and their phenomenological implications

EWSL in SMEFT: introduction to our work

Leveraging previous works, we

 \rightarrow apply the DP algorithm to SMEFT; identify the domain of applicability

 \rightarrow study top-quark pair and Drell-Yan production at the LHC with 4F insertions

 \rightarrow assess the significance of those corrections in SMEFT and their phenomenological nplications

SMEFT insertions may introduce mass-suppressed amplitudes

 \rightarrow limits the application of DP algorithm as it stands, though EWSL are still relevant

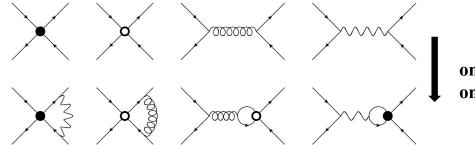
SMEFT insertions may introduce mass-suppressed amplitudes

 \rightarrow limits the application of DP algorithm as it stands, though EWSL are still relevant

Four-fermion (4F) dim-6 contact interactions are not mass-suppressed

 \rightarrow utilise to compute Sudakov EW corrections at dim-6

HF, Mimasu, Pagani, Severi, Vryonidou, Zaro. 2412.16076

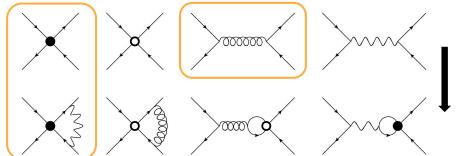

SMEFT insertions may introduce mass-suppressed amplitudes

 \rightarrow limits the application of DP algorithm as it stands, though EWSL are still relevant

Four-fermion (4F) dim-6 contact interactions are not mass-suppressed

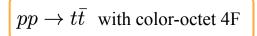
→ utilise to compute Sudakov EW corrections at dim-6

HF, Mimasu, Pagani, Severi, Vryonidou, Zaro. 2412.16076


one-loop perturbation on 2→2 scattering

SMEFT insertions may introduce mass-suppressed amplitudes

 \rightarrow limits the application of DP algorithm as it stands, though EWSL are still relevant


Four-fermion (4F) dim-6 contact interactions are not mass-suppressed

→ utilise to compute Sudakov EW corrections at dim-6

HF, Mimasu, Pagani, Severi, Vryonidou, Zaro. 2412.16076

one-loop perturbation on $2 \rightarrow 2$ scattering

EWSL in SMEFT: introduction to our work

Leveraging previous works, we

 \rightarrow apply the DP algorithm to SMEFT; identify the domain of applicability

 \rightarrow study top-quark pair and Drell-Yan production at the LHC with 4F insertions

 \rightarrow assess the significance of those corrections in SMEFT and their phenomenological mplications

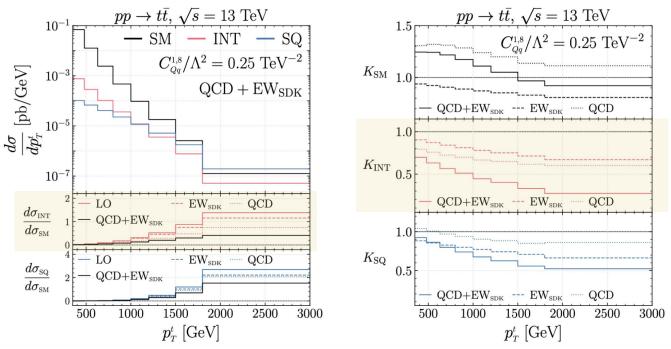
EWSL in SMEFT: introduction to our work

Leveraging previous works, we

 \rightarrow apply the DP algorithm to SMEFT; identify the domain of applicability

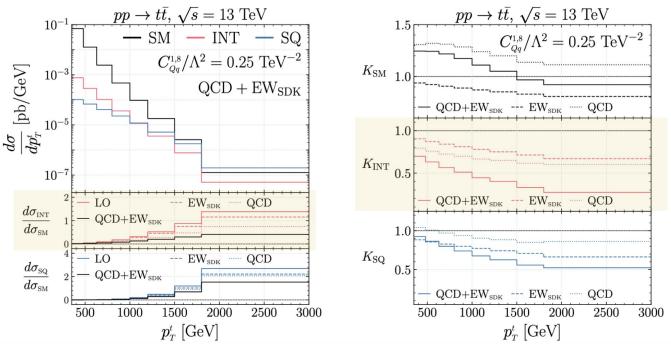
 \rightarrow study top-quark pair and Drell-Yan production at the LHC with 4F insertions

 \rightarrow assess the significance of those corrections in SMEFT and their phenomenological nplications


- Utilise the EWSL implementation in MG5_aMC

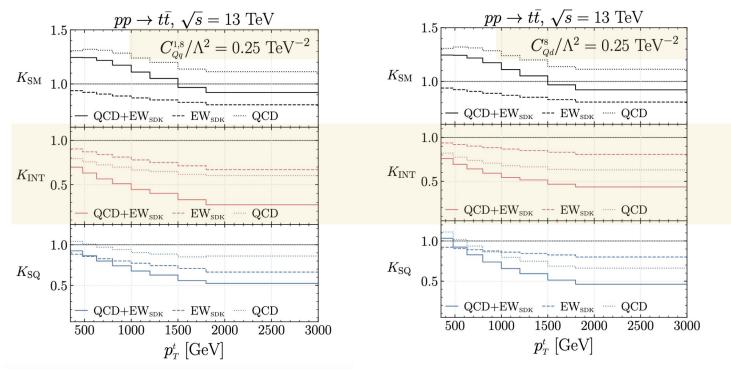
Pagani and Zaro, 2110.03714

Degrande et al, 2008.11743

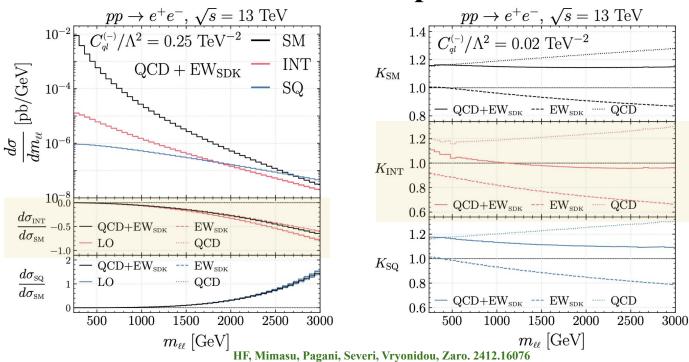

- UFO model for SMEFT based on SMEFTatNLO

EWSL in SMEFT: top-quark pair production with 4F

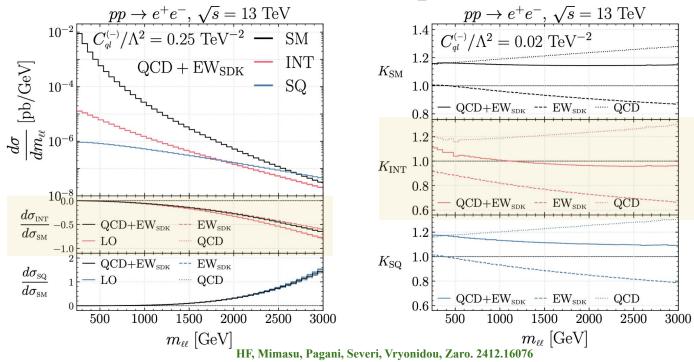
HF, Mimasu, Pagani, Severi, Vryonidou, Zaro. 2412.16076


EWSL in SMEFT: top-quark pair production with 4F

HF, Mimasu, Pagani, Severi, Vryonidou, Zaro. 2412.16076


In the high-energy region, EW corrections can be important, in the SM and SMEFT

EWSL in SMEFT: top-quark pair production with 4F



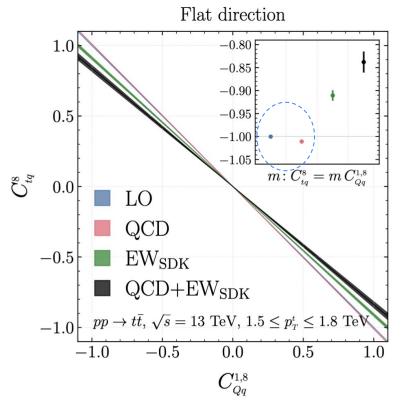
SMEFT K-factors are different among different 4F operators and from the SM

EWSL in SMEFT: Drell-Yan production with 4F

EWSL in SMEFT: Drell-Yan production with 4F

QCD and EW corrections may feature strong, almost exact, cancellations in the EFT

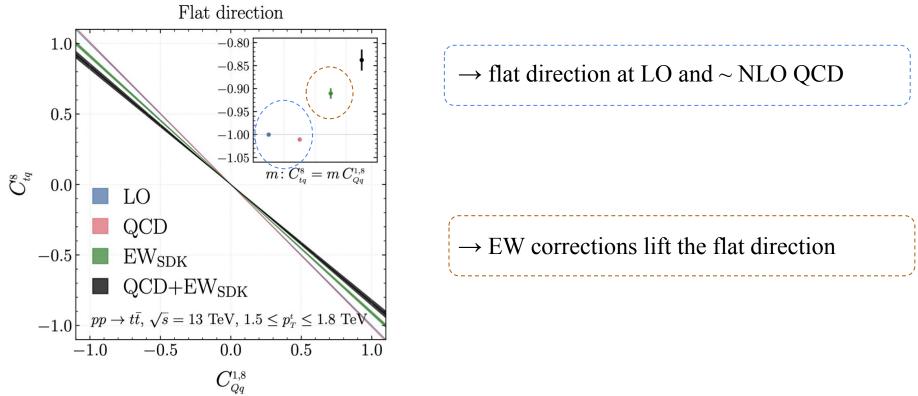
EWSL in SMEFT: introduction to our work


Leveraging previous works, we

 \rightarrow apply the DP algorithm to SMEFT; identify the domain of applicability

 \rightarrow study top-quark pair and Drell-Yan production at the LHC with 4F insertions

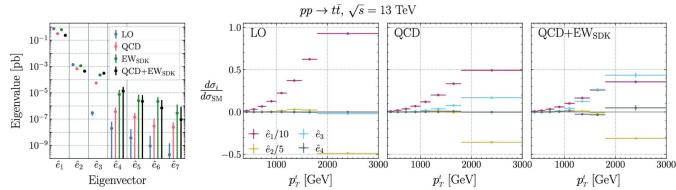
 \rightarrow assess the significance of those corrections in SMEFT and their phenomenological implications


EWSL: SMEFT flat directions in top-quark pair production

 \rightarrow flat direction at LO and \sim NLO QCD

HF, Mimasu, Pagani, Severi, Vryonidou, Zaro. 2412.16076

EWSL: SMEFT flat directions in top-quark pair production

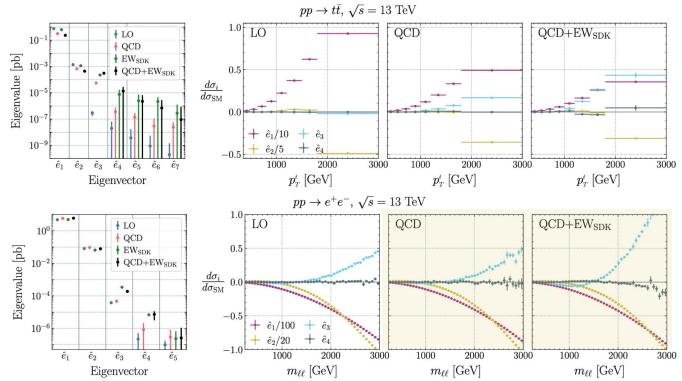


Hesham El Faham (UoM)

HF, Mimasu, Pagani, Severi, Vryonidou, Zaro. 2412.16076

HF, Mimasu, Pagani, Severi, Vryonidou, Zaro. 2412.16076

EWSL: SMEFT flat directions Fisher information



Fisher Information: quantifies the sensitivity of the data to a given direction in the parameter space

large eigenvalues \rightarrow well-constrained directions; **zero eigenvalues** \rightarrow flat directions

30

EWSL: SMEFT flat directions Fisher information

EW corrections lift some of the SMEFT flat directions existent at LO and NLO QCD

Summary and outlook

 \rightarrow Computed EWSL for two illustrative processes with the insertion of four-fermion operators

- → The DP algorithm can't be generally applied to the SMEFT
- \rightarrow EWSL can lead to significant enhancements in the SM and EFT

 \rightarrow The K-factors in EFT and the SM are discrepant, as are the K-factors for different EFT operators, making a simplistic K-factor approach to account for EW corrections inadvisable

 \rightarrow EW corrections seem capable of lifting some flat directions in the SMEFT parameter space

Backup

What do we actually compute?

$$\lim_{M_W^2/s\to 0} \mathrm{NLO}_2^{(6)} \propto 2\Re \Big[\mathcal{M}_0^{\mathrm{NP}} \left(\mathcal{M}_0^{\mathrm{SM}} \delta_{\mathrm{EW}}^{\mathrm{SM}} \Big|_{\mathrm{SDK}_{\mathrm{weak}}} \right)^* + \mathcal{M}_0^{\mathrm{SM}} \left(\mathcal{M}_0^{\mathrm{NP}} \delta_{\mathrm{EW}}^{\mathrm{SM}} \Big|_{\mathrm{SDK}_{\mathrm{weak}}} \right)^* \Big],$$

$$(2.43)$$

$$\lim_{M_W^2/s\to 0} \mathrm{NLO}_2^{(8)} \propto 2\Re \left[\mathcal{M}_0^{\mathrm{NP}} \left(\mathcal{M}_0^{\mathrm{NP}} \delta_{\mathrm{EW}}^{\mathrm{SM}} \Big|_{\mathrm{SDK}_{\mathrm{weak}}} \right)^* \right].$$

$$(2.44)$$

EWSL: amplitudes suppression

Sudakov corrections can be included as multiplicative factor to scattering amplitude,

$$\mathcal{A}(s) \sim \mathcal{A}_{ ext{tree}} \cdot \exp\left[-rac{lpha}{4\pi}\sum_i C_i \log^2\left(rac{s}{M_W^2}
ight)
ight]$$

At asymptotically high energies, the exponential suppression is significant

 \rightarrow .. and EWSLs enhancements dominate over constant and power suppressed radiative corrections