Experimental EFT Combinations

Eleonora Rossi on behalf of <u>ATLAS</u> & CMS Collaborations

1 NK

SM@LHC2025 - Durham (UK) 08/04/2025

Introduction

- Increasing number of **Effective Field Theory (EFT)** measurements and reinterpretations in ATLAS and CMS which are complementing (or superseding) other interpretations.
- An EFT approach is a **very powerful tool** used in different fields of physics; allows one to combine different types of measurements (Higgs, top, EW physics,...).
- Constrain EFT coefficients -> constrain large classes of UV theories.
- A popular EFT model is the **SMEFT** (standard for dim6 interpretations): complete QFT compatible with higher-order calculations.

Global combinations: inputs + parameterisation

Going "Global": inputs

- Focus on global combinations, public results + challenges & open points
 - interesting talks on results by individual sectors (Higgs, Vector Bosons, Fermions)
- Focus on **dimension6 results**; interesting talk on dimension8 (<u>Link</u>).

ATLAS Global combination 2022 (Higgs+EW+EWPO): ATL-PHYS-PUB-2022-037 (SMEFTSIM + SMEFT@NLO)

1	Observable			
	Γ_{Z} [MeV]	Decay channel	Target Production Modes	Process
	R_{ℓ}^{0}	$H \to \gamma \gamma$	ggF, VBF, WH , ZH , $t\bar{t}H$, tH	$\overline{pp \to e^{\pm} \nu \mu^{\mp} \nu}$
	R_c^0 R_L^0	$ \begin{array}{c} H \to ZZ^* \\ H \to WW^* \end{array} $	ggF, VBF, WH, ZH, ttH(4t) ggF, VBF	$pp \rightarrow \ell^{\pm} \nu \ell^{+} \ell^{-}$
	$A_{\mathrm{FB}}^{b,\ell}$	$\underline{H \to \tau\tau}$	ggF, VBF, WH, ZH, $t\bar{t}H(\tau_{had}\tau_{had})$	$pp \rightarrow \ell^+ \ell^- \ell^+ \ell^-$
	$A_{\text{FB}}^{0,c}$	$H \rightarrow h\bar{h}$	WH, ZH VBF	$pp \rightarrow \ell^+ \ell^- jj$
	$A_{\rm FB}^{0,0}$ $\sigma_{\rm hod}^0$ [pb]		tīH	

CMS Global combination 2024 (Higgs+SM+EWPO+TOP):

CMS PAS SMP-24-003 (SMEFTSÍM + SMEFT@NLO)

Analysis	Type of measurement	Observables used	Experimental likelihood
$H \rightarrow \gamma \gamma$	Diff. cross sections	STXS bins [41]	\checkmark
$W\gamma$	Fid. diff. cross sections	$p_{\mathrm{T}}^{\gamma} imes oldsymbol{\phi}_{f} $	\checkmark
WW	Fid. diff. cross sections	$m_{\ell\ell}$	\checkmark
Z ightarrow u u	Fid. diff. cross sections	p_{T}^{Z}	\checkmark
tĪ	Fid. diff. cross sections	$M_{t\bar{t}}$	×
EWPO	Pseudo-observables	$\Gamma_Z, \sigma_{\text{had}}^0, R_\ell, R_c, R_b, A_{FB}^{0,\ell},$	×
T 1 · · · /	T: 1 1:00 ···	A_{FB}, A_{FB}	
Inclusive jet	Fid. diff. cross sections	$p_{\rm T}^{\prime} \times y^{\rm ec} $	×
tīX	Direct EFT	Yields in regions of interest	\checkmark

SM@LHC2025-08/04/2025 Eleonora Rossi

ATLAS Global combination

Decay channel	Target Production Modes	\mathcal{L} [fb ⁻¹]	• ATLAS Higgs boson data (2021 combination)
$H \to \gamma \gamma$ $H \to ZZ^*$ $H \to WW^*$ $H \to \tau \tau$	ggF, VBF, WH, ZH, $t\bar{t}H$, tH ggF, VBF, WH, ZH, $t\bar{t}H(4\ell)$ ggF, VBF ggF, VBF, WH, ZH, $t\bar{t}H(\tau_{had}\tau_{had})$ WH, ZH	139 139 139 139 139 139 126	 Higgs boson production and decay combined measurements in STXS bins Higgs Combination
$\Pi \rightarrow UU$	tīH	120	
Process	Important phase space requirements	Observable	\mathcal{L} [fb ⁻¹] $WW, WZ, 4i, Z+2jets combination$
$pp \to e^{\pm} \nu \mu^{\mp} \nu$ $pp \to \ell^{\pm} \nu \ell^{+} \ell^{-}$ $pp \to \ell^{+} \ell^{-} \ell^{+} \ell^{-}$ $pp \to \ell^{+} \ell^{-} j j$	$m_{\ell\ell} > 55 \text{ GeV}, p_{T}^{\text{jet}} < 35 \text{ GeV}$ $m_{\ell\ell} \in (81, 101) \text{ GeV}$ $m_{4\ell} > 180 \text{ GeV}$ $m_{jj} > 1000 \text{ GeV}, m_{\ell\ell} \in (81, 101) \text{ GeV}$	$p_{\rm T}^{\rm lead. \ lep.} \ p_{\rm T}^{WZ} \ m_{\rm T}^{WZ} \ m_{Z2}^{MZ2}$	 ATLAS electroweak data Differential cross-section measurements for diboson and Z production via VBF

Observable	Measurement	Prediction	Ratio	
Γ_Z [MeV]	2495.2 ± 2.3	2495.7 ± 1	0.9998 ± 0.0010	
R^0_{ℓ}	20.767 ± 0.025	20.758 ± 0.008	1.0004 ± 0.0013	
R_c^0	0.1721 ± 0.0030	0.17223 ± 0.00003	0.999 ± 0.017	•
R_{h}^{0}	0.21629 ± 0.00066	0.21586 ± 0.00003	1.0020 ± 0.0031	
$A_{\mathrm{FB}}^{\mathrm{O},\ell}$	0.0171 ± 0.0010	0.01718 ± 0.00037	0.995 ± 0.062	
$A_{\rm FB}^{0,c}$	0.0707 ± 0.0035	0.0758 ± 0.0012	0.932 ± 0.048	•
$A_{\rm FB}^{0,b}$	0.0992 ± 0.0016	0.1062 ± 0.0016	0.935 ± 0.021	
$\sigma_{\rm had}^{0}$ [pb]	41488 ± 6	41489 ± 5	0.99998 ± 0.00019	

Precísion Electroweak Measurements on the Z Resonance

- Electroweak precision observables measured at LEP and SLC
- Eight pseudo observables describing the physics at the *Z*-pole are interpreted.

CMS Global combination

CMS PAS SMP-24-003

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{\text{Analysis}}{\text{H} \to \gamma \gamma}$	Type of mea Diff. cross s	surement sections	Observables used STXS bins [41]	JHEP 07 (2021) 027
Analysis ttType of measurement Direct EFT Fid. diff. cross sectionsObservables used Yields in regions of interest $t\bar{t}\chi$, <u>JHEP 12 (2023) 068</u> $t\bar{t}$, <u>Phys. Rev. D 104 (2021) 092013</u> $t\bar{t}$, <u>Phys. Rev. D 104 (2021) 092013</u> Observable ttMeasurementPredictionRatio 0.9998 ± 0.0010 1.0004 ± 0.0013 	Analysis W γ WW Z $\rightarrow \nu\nu$ Inclusive	Type of mea Fid. diff. c Fid. diff. c Fid. diff. c jet Fid. diff. cro	surement ross sections ross sections ross sections ss sections	Observables used $p_{\mathrm{T}}^{\gamma} \times \phi_{f} $ $m_{\ell\ell}$ p_{T}^{Z} $p_{\mathrm{T}}^{\mathrm{jet}} \times y^{\mathrm{jet}} $	 <u>Wy, Phys. Rev. D 105 (2022) 052003</u> <u>WW, Phys. Rev. D 102, 092001 (2020)</u> <u>Zvv, JHEP 05 (2021) 205</u> <u>Inclusive Jet, JHEP 02 (2022) 142</u>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Analysis tīX tī	Type of measur Direct EFT Fid. diff. cross s	ement Ob Yiel ections M _{tī}	servables used ds in regions of intere	• tĪχ, <u>JHEP 12 (2023) 068</u> est • tĪ, <u>Phys. Rev. D 104 (2021) 092013</u>
	Observable Γ_Z [MeV] R_{ℓ}^0 R_{c}^0 R_{b}^0 $A_{FB}^{0,\ell}$ $A_{FB}^{0,\ell}$ $A_{FB}^{0,c}$ $A_{FB}^{0,b}$ σ_{had}^0 [pb]	MeasurementPres 2495.2 ± 2.3 2495.7 20.767 ± 0.025 20.758 0.1721 ± 0.0030 0.17223 0.21629 ± 0.00066 0.21586 0.0171 ± 0.0010 0.01718 0.0707 ± 0.0035 0.0758 0.0992 ± 0.0016 0.1062 41488 ± 6 41489	dictionRa ± 1 0.9998 ± 0.008 1.0004 ± 0.00003 0.999 ± 0.00003 1.0020 ± 0.00037 0.995 ± 0.0012 0.932 ± 0.0016 0.935 ± 5 0.99998	$ \frac{\text{tio}}{\pm 0.0010} \\ \pm 0.0013 \\ \pm 0.0013 \\ \pm 0.0031 \\ \pm 0.062 \\ \pm 0.048 \\ \pm 0.021 \\ \pm 0.00019 $ Precision Precision ON the Z ON the Z Electrowe LEP and S • Eight pseud pole are interval	n Electroweak Measurements , Resonance eak precision observables measured at SLC do observables describing the physics at the Z- erpreted.

ATLAS

- The **Warsaw basis**, which provides a complete set of independent operators allowed by the SM gauge symmetries, is used; a value of $\Lambda = 1$ TeV is assumed.
- Only **dim-6** operators are considered (dim-5 and dim-7 violate Lepton and Baryon number).
- Input parameter scheme: (m_W, m_Z, G_F) .
- $Top U(3)^{5} = U(3)_{q} \times U(3)_{u} \times U(3)_{d} \times U(3)_{l} \times U(3)_{e}$ In the lepton sector we consider two alternative ansätze: Relax $\mathrm{U}(2)_q \times \mathrm{U}(2)_u \times \mathrm{U}(2)_d \times \mathrm{U}(3)_l \times \mathrm{U}(3)_e$ (a) a $U(1)_{l+e}^3 = U(1)_e \times U(1)_{\mu} \times U(1)_{\tau}$ symmetry under which the fields transform as ransform as $l_1 \mapsto e^{i\alpha_e} l_1$, $l_2 \mapsto e^{i\alpha_\mu} l_2$. $l_3 \mapsto e^{i\alpha_\tau} l_3$. (3.42)(3.42)First two guark All lepton $e_1 \mapsto e^{i\alpha_e} e_1$, $e_2 \mapsto e^{i\alpha_\mu} e_2$, $e_3 \mapsto e^{i\alpha_\tau} e_3$. (3.43)(3.43)generations generations This matches the "baseline" scenario in ref. [36] and corresponds to simple flavorsimple flavortreated similarly treated similarly diagonality. It is implemented in the top models. (b) a U(3)² = U(3)_l × U(3)_e symmetry under which
- SMEFT dependence parameterised as polynomials ^(h) the SM predictions can be factored out in a linear a:

 $l \mapsto \Omega_l l , \quad e \mapsto \Omega_e e , \qquad Y_l \mapsto \Omega_e Y_l \Omega_l^{\dagger}. \tag{3.44}$ (3.44) In the lepton sector, this setup matches exactly the structure of the U35 and MFV models. It is more restrictive compared to U(1)_{l+e}^3 and contains fewer free parameters. \Rightarrow parameters.

It is implemented in the $\verb"topU31"$ models.

- Impact of Wilson coefficients can be visualised (linear here)-> Value of c_i scaled appropriately for plotting.
- Large class of operators can be constrained by different sectors: $H \rightarrow \gamma \gamma$ from CMS shown.

SM@LHC2025-08/04/2025 Eleonora Rossi

8

CMS

• Additional sensitivity coming from EW measurements and EWPO, e.g. cW that cannot be disentangled using just $H \rightarrow \gamma \gamma$ decay -> ATLAS parameterisation shown

Going "Global": sensitivity

- While SMEFT parameters define a complete basis, measurable subset is small:
 - not sensitive to all the Wilson coefficients (~180 in TopU3l scheme); need to identify sensitive directions that • can be reasonably constrained (non sensitive ones will be fixed)
- Principal component analysis on information matrix:

 H_{μ} : covariance matrix of the input measurements

0

-0.5

P: matrix that gives the parametrisation

Basis Rotation

- Fit basis-> Higher correlation, easier to interpret. **CMS** Preliminary

EV1 ($\lambda^{-1/2} = 0.001$) EV2 ($\lambda^{-1/2} = 0.002$) 03030 -0.1 030 0 1 0.7 0.2 -0.5-0.4 -0.1 EV3 ($\lambda^{-1/2} = 0.003$) -0.3 -0.1-0.1-0.5 0.7 0.4 -0.1 EV4 ($\lambda^{-1/2} = 0.006$) -0.4 -0.1<mark>-0.9</mark>0.3 0.1 -0.1 0.1 0.1 EV5 $(\lambda^{-1/2} = 0.007)$ -0.5-0.4 -0.1 -0.1-0.1 -0.1-0.10.3 -0.40.5 -0.1 ^{1/2} = 0.011) EV6 (λ⁻¹ 0.3 0.1 0.1 0.5 0.5 0.3 0.2 0.1 0.1 -0.5 0.1 0.4 -0.3 0.2 0.1 -0.1 0.1 -0.6 -0.2 EV7 (λ = 0.016) -0.1 EV8 ($\lambda^{-1/2} = 0.016$) EV8 ($\lambda^{-1/2} = 0.016$) EV9 ($\lambda^{-1/2} = 0.032$) 0.1 0.1 0.1 0.5 -0.1 -0.6-0.0 0.3 -0.10.7 0.1 -0.1-0.1-0.2-0.4 0.4 EV10 ($\lambda^{-1/2} = 0.048$) 0.2 0.1 0.1 -0.10.1 -0.1 -0.1 EV11 (λ^{-1/2} 0.5 = 0.048) 0.1 0.5-0.2-0.10.1-0.2 0.1 0.1 -1.0 0.1 EV12 (λ = 0.11) EV13 (λ = 0.13) -0.1 0.1 0.1 0.1 0.1 0.1 EV14 (λ -0.1 0.1 -0.1 -0.1 = 0.140.1 0.1 -0.1 0.1 EV15 (λ = 0.16-0.1 0.3 0.2 0.2 -0.10.2 0.3 0.1 0.1 -0.1 0.2 EV16 (λ = 0.17) 0.1 -0.1-0.1 -0.2 0 -0.1 0.5 0.3 -0.1 -0.4 EV17 (λ = 0.24)-0.1-0.1-0.4-0.2-0.3-0.1-0.1 -0.2-0.4 EV18 (λ = 0.28)-0.1 0.2 0.1 -0.1 -0.1-0.1 0.1 ^{1/2} = 0.35) EV19 (λ -0.6-0.2-0.10.1-0.1-0.4-0.2 0.1 0. ^{-1/2} = 0.45) EV20 (λ 0.1 -0.1 -0.10.1 -0.1 0.2 -0.10.3 0.5 -0.4 0.1-0.2 ^{1/2} = 0.47) EV21 (λ 0.1 -0.1 -0.1 0.1 EV22 $(\lambda^{-1/2} = 0.61)$ -0.2 0.2 -0.2 0.2 0.1 -0.9 0.1 0.1 -0.1 EV23 ($\lambda^{-1/2} = 0.66$) 0.4 -0.4 0.2 -0.1-0.4 -0.1-0.1-0.2 0.2 0.6 0.1 ^{-1/2} = 0.69) EV24 (λ -0.2-0.2 0.6 -0.1 0.5 -0.3 0.1 -0.3 0.1 -0.2 0.1 0.2 $^{1/2} = 0.74$) EV25 (λ 0.1 0.1 0.1 -0.1 -0.1 -0.1 -^{1/2} = 0.84) EV26 (λ 0.1 -0.4 0.6 -0.6 -0.10.1 -0.1 -0.2 0.1 -0.1 -1/2 = 0.95) EV27 (λ 0.1 -0.2 -0.2 -0.2 0.10.2 -^{-1/2} = 1.4) EV28 (λ 0.5 0.1-0.20.1 0.1 -0.7-0.1 -0.3-0.2-0.2 ^{-1/2} = 1.6) EV29 (λ 0.3 -0.10.1 -0.1 0.2 -0.3-0.10.2 0.1 ^{-1/2} = 1.8) -0.2 0.2 0.1 EV30 (λ 0.1 -0.1 $^{1/2} = 2.0$) 0.1 -0.1-0.1 EV31 (λ -0.2 -0.1 0.1 -0.20.2 -0.1-0.10.2 -0.40.2 0.7 0.1 -0.10.3 -0.1-0.1 EV32 (λ = 2.2) 0.4 -0.5 0.3 0.2 0.1 0.1 0.5 -0.1-0.2 -0.1 -0.1 0.1 -0.2-0.2 0.2 EV33 (λ = 2.3)0.1 -0.1 6 -0.3-0.30.3 -0. EV34 (λ = 2.5) -0.1 -0.1 -0.9 0.3 0.1 -0.1-0.1 0.1 0.2 0.1 -1/2 = 2.6) 0.1 0.1 0.1 EV35 (λ -0.1-0.1 0.1 -0.1 -0.2 0.1 0.1 -0.1 0.1 0.1 -0.10.1 0.2 -0.1 -0.2 0.2 -0.2 0.1 -1/2 = 2.8) EV36 (λ ^{-1/2} = 3.1) 0.2 -0.2 0.1 0.1 0.1 0.3 0.2 0.1-0.3-0.6 0.1 -0.3 0.1 -0.1 EV37 (λ 0.1 -0.1 -0.1 -1/2 = 3.4) EV38 (λ 0.2 0.1 -0.5 0.2 0.1 0.4 -0.2 -0.2 0.1 0.1 -0.1 -0.1 0.1 -0.3 -0.3 -0.3 $^{-1/2} = 3.4$) EV39 (λ 0.1 0.2 -0.4 0.1 0.1 0.2 0.1 0.3 -0.1 -0.1 -0.2 -0.1-0.10.1 0.1-0.20.4 0.5 0.4 0.1 -0. -1/2 = 3.5) EV40 (λ -0.1 0.1 -0.2 -0.2 0.1 0.1 -0.1 -0.1-0.1-0.1-0.10.1 0.4 -0.1 0.1 0.1 0.1 0.1 -0.1 EV41 ($\lambda^{-1/2} = 4.4$) -0.10.4 0.5 -0.2 -0.6 -0.20.1 0.1 0.1 -0.2 0.1 EV42 ($\lambda^{-1/2} = 4.9$) 0.2 -0.1 0.2 0.1 0.3 0.10.1 0.4-0.2-0.4-0.2 0.5

CMS PAS SMP-24-003

Going "Global": sensitivity

- While SMEFT parameters define a complete basis, measurable subset is small
 - not sensitive to all the Wilson coefficients (~180 in TopU3l scheme); need to identify sensitive directions that can be reasonably constrained (non sensitive ones will be fixed)
- Principal component analysis on information matrix:

$$H_{SMEFT} = P^T H_{\mu} P$$

- H_{μ} : covariance matrix of the input measurements
- *P*: matrix that gives the parametrisation

S-PUB-2022-037

- Full eigenvector basis-> Negligible correlation, harder to interpret. - (Fit basis-)> Higher correlation, easier to interpret.

SM@LHC2025-08/04/2025 Eleonora Rossi

Global combinations: results

ATLAS Global combination

<u> АТL-РНҮ 5-РИВ-2022-037</u>

HIGGS+EW

- Principal component analysis to
 identify sensitive directions-> a
 modified basis of linear
 combinations of WCs is defined.
 Constraining 7 individual and 17
 linear combinations of WCs
- Linear and linear+quadratic results.
- Complementary information.

ATLAS Global combination

ATL-PHYS-PUB-2022-037

HIGGS+EW+EWPO

- Constraining **6+22** directions linear only results.
- Several constraints driven by both ATLAS and LEP/SLD.
- Complementary information.
- Linear fits agree with the SM expectation for most fitted parameters, except for:
 - $c_{HVV,Vff}^{[4]} \rightarrow$ excess driven by a wellknown discrepancy in $A_{FB}^{0,b}$ from the SM expectation.

CMS Global combination

CMS PAS SMP-24-003

- All linear combinations of WCs are varied simultaneously: **42 eigenvector directions.**
- The 95% confidence intervals on the 42 eigenvector directions are in the range ± 10 to ± 0.002 .
- The p-value for the compatibility with the SM (all Wilson coefficients equal to 0) is 1.7%.
- The deviation from the SM is mostly driven by the inclusive jet measurement; when excluding it from the combination, the p-value is found to be 26%.

Eleonora Rossi

CMS

CMS Global combination

10-4

CMS PAS SMP-24-003

Powere units the powere

- Constraints on **64 individual WCs**, obtained when fixing all other WCs to 0.
- The 95% confidence interval on the individual WCs cj/Λ^2 ranges from around ± 20 to ± 0.003 .

 By setting c_j to specific values, obtained constraints on WCs are translated into 95% CL lower limits on the scale of new physics Λ.

Lessons learned (personal selection)

Open points and challenges

• **Many potential challenges and open points** (that will not be fully addressed by the short-term future EFT combinations, but should be taken into account for Run3 interpretations).

• Challenges at the level of combinations

- overlap between input analyses;
- harmonisation of systematics & phase-space across groups;
- harmonisation of SMEFT assumptions/tools.

• Challenges at conceptual level (more for future combinations)

- parameterisation of background: e.g. $t\bar{t}$ signal = Higgs background-> coherent modelling of $t\bar{t}$ in Higgs?
- inclusion of dimension8 contributions interplay between linear and quadratic;
- matching to UV models (ATLAS Higgs combination has done it for the first time);
- moving towards higher and higher pT bins-> unitarity violation at sufficiently high energy._

Interaction with **theory community** is really important (LHCEFTWG)

reproducibility of the results.

Cometa Workshop - 19/03/2025 Eleonora Rossi

Interplay between linear and quadratic results

Linear vs linear +quadratic

CMS PAS SMP-24-003

- Constraints on the WCs when using linear contributions ($\propto \Lambda^{-2}$) vs quadratic order ($\propto \Lambda^{-4}$).
- WCs with the loosest constraints: **BSM contributions dominate**.
- WCs more tightly constrained: **SM-BSM interference terms** dominate the sensitivity.
- For now treating difference between Λ⁻² and Λ⁻⁴ as magnitude indicator of effect missing SM-Dim8 interference.

Collect & implement
 available dim-8 calculations
 (=incomplete but growing set).

2. Develop a more sophisticated strategy to quote **truncation uncertainty** using partial calculations.

SM@LHC2025-08/04/2025 Eleonora Rossi

Matching to UV models

EFT to 2HDM

- Premise of EFT is that measurements can be mapped *a posteriori* to put constraints on UV-complete models
- SMEFT constraints can be rotated into 2HDM models using inputs from the theory community
- Relevant Wilson coefficients (free parameters of SMEFT Lagrangian) can be expressed in terms of 2HDM parameters: $\mathscr{L}_{SMEFT} = \mathscr{L}_{SM} + \sum_{\Lambda^2} O_i^{(6)} + \sum$

SMEFT parameters	Type I	Type II	Lepton-specific	Flipped
$\frac{v^2 c_{tH}}{v^2 c_{tH}}$	$-V_{co}$ /tan β	$-V_{co}$ /tan β	$-V_{\rm co}$ /tan β	$-V_{co}$ /tan β
Λ^2	$-I_t c_{\beta-\alpha}/\tan \beta$	$-I_t c_{\beta-\alpha}/\tan \beta$	$-I_t c_{\beta-\alpha}/\tan \beta$	$-I_t c_{\beta-\alpha}/\tan \beta$
$\frac{1}{\Lambda^2}$	$-Y_b c_{\beta-\alpha}/\tan\beta$	$Y_b c_{\beta-\alpha} \tan \beta$	$-Y_b c_{\beta-\alpha}/\tan\beta$	$Y_b c_{\beta-\alpha} \tan \beta$
$\frac{v^2 c_{eH,22}}{\Lambda^2}$	$-Y_{\mu}c_{\beta-\alpha}/\tan\beta$	$Y_{\mu}c_{\beta-\alpha}\tan\beta$	$Y_{\mu}c_{\beta-\alpha}\tan\beta$	$-Y_{\mu}c_{\beta-\alpha}/\tan\beta$
$\frac{v^2 c_{eH,33}}{\Lambda^2}$	$-Y_{\tau}c_{\beta-\alpha}/\tan\beta$	$-Y_{\tau}c_{\beta-lpha}\taneta$	$Y_{\tau}c_{\beta-\alpha}\tan\beta$	$-Y_{\tau}c_{\beta-\alpha}/\tan\beta$
$\frac{v^2 c_H}{\Lambda^2}$	$c_{eta-lpha}^2 M_A^2/v^2$	$c_{eta-lpha}^2 M_A^2/v^2$	$c_{eta-lpha}^2 M_A^2/v^2$	$c_{eta-lpha}^2 M_A^2/v^2$

with Λ the SMEFT energy scale , ν the VEV, Y_i the Yukawa-couplings ($Y_i = \sqrt{2m_i}/\nu$), M_A is the common mass of the heavy decoupled scalars.

Angles α (mixing angle between the two neutral CP-even Higgs state) and β ($tan\beta = \frac{\nu_2}{\nu_1}$)

• Formulas valid in the limit of $cos(\beta - \alpha) \rightarrow 0$ (alignment limit), in agreement with EFT assumptions.

Paper

EFT to 2HDM

- Results obtained in 2023 ATLAS Higgs combination (STXS, seven) decay channels) for all types of models.
- Relevant coefficients parametrised as function of the 2HDM parameters.
- self-coupling role studied separately for type I: adds a vertical constraint in the 2D space of $\cos(\beta - \alpha) - \tan \beta$ (negligible for other types)
- Mapping is affected by missing SMEFT dimension-8 operators:
 - constraints from SMEFT parameters weaker than from kparameters

SM@LHC2025-08/04/2025 Eleonora Rossi

Reproducibility of the results

Complexity of the model makes the fitting long and CPU expensive: a quick way of studying it is with **simplified likelihood fits**

 $MultiVariate\ Gaussian\ model\ (MVG)\ constructed\ as:$

$$L(\boldsymbol{\mu}) = \frac{1}{\sqrt{(2\pi)^{n_{\boldsymbol{\mu}}} \det(C_{\boldsymbol{\mu}})}} \exp\left(-\frac{1}{2}\Delta\boldsymbol{\mu}^{\mathsf{T}}C_{\boldsymbol{\mu}}^{-1}\Delta\boldsymbol{\mu}\right), \quad \Delta\boldsymbol{\mu} = \boldsymbol{\mu} - \hat{\boldsymbol{\mu}}.$$

where $\hat{\mu}$ are the POIs best fit results obtained over the full statistical model and C_{μ} is the covariance matrix at the best fit values, encoding information on statistical and systematic uncertainty Simplified likelihood model:

- format to deliver results for re-interpretation;
- make available digitally all information needed to reproduce Gaussian version of measurement and SMEFT interpretation
 - signal strength modifier + correlation matrix + parameterisation.

Simplified likelihood

Results from the full likelihood fit compared to those using a simplified likelihood following a multi-variate Gaussian approach:

- minimal differences between the two methods;
- the simplified model is nuisance parameter free, as the effect of all uncertainties is encoded in the covariance matrix-> computationally inexpensive.

SM@LHC2025-08/04/2025 Eleonora Rossi

What's next?

Current and future plans

Several channels/data samples not yet included in current ATLAS +CMS EFT combinations

- Higgs
 - Rare processes $H \rightarrow cc, VBF \rightarrow H\gamma$
 - Off-shell regions of $H \rightarrow WW$ and $H \rightarrow ZZ$
 - Angular observables sensitive to CP-odd operators (in both production & decay)
 - full STXS results for both ATLAS and CMS
 - Run3 developments (like new STXS scheme) will offer nice opportunities to further improve our limits
- Higgs pair production
 - increasing number of SMEFT interpretation: preparing for future combinations
- Many opportunities for combinations
 - dibosons, Drell-Yan, top-quarks
- ATLAS + CMS combination
- Efforts are on-going to pave the road for future combinations (e.g. shared STXS parameterisation) Several open points we can try to address while working on Run3, e.g.:
- experimental side: background parameterisation
- theoretical side: dimension8 contributions

Thanks a lot!!

- Impact of Wilson coefficients can be visualised (linear here)-> Value of c_i scaled appropriately for plotting.
- Large class of operators can be constrained by different sectors: $H \rightarrow \gamma \gamma$ from CMS shown.

CMS

- Impact of Wilson coefficients can be visualised (linear here)-> Value of c_i scaled appropriately for plotting.
- Large class of operators can be constrained by different sectors: $H \rightarrow \gamma \gamma$ from CMS shown.

CMS PAS SMP-24-003

CMS

• Additional sensitivity coming from EW measurements and EWPO, e.g. cW that cannot be disentangled using just $H \rightarrow \gamma \gamma$ decay -> ATLAS parameterisation shown

Eleonora Rossi

Simplified likelihood: reinterpretation

<u>arXív:2302.06660</u>

- The open source **SMEFiT** has been used to reproduce the ATLAS EFT interpretation of LHC and LEP data.
- The SM and linear EFT cross-sections from the ATLAS measurement are taken and parse into the SMEFiT format adopting the same flavour assumptions for the fitting basis.
- Good agreement is obtained both in terms of central values and of the uncertainties of the fitted Wilson coefficients.
- Furthermore, similar agreement is obtained for the correlations between EFT coefficients.

SM@LHC2025 - 08/04/2025

Eleonora Rossi

Statistical model

1. Poisson distributions multiplied with constraint terms f for dach nublate parameters

Higgs

$$L(x \ \mu, \theta) = \prod_{c}^{N_{cat}} \left[\prod_{t \ e}^{N_{bins}} \text{Poisson}(\Sigma_s N_s^c + \Sigma_b N_b^c), n_{obs,e}\right] \prod_{i}^{n_{syst}} (f_i(\theta_i))$$

2. The likelihood $L(\mathbf{x} | \mathbf{c}, \boldsymbol{\theta})$ for an individual measurement is modelled as a multivariate Gaussian

$$L\left(\boldsymbol{x}|\boldsymbol{c},\boldsymbol{\theta}\right) = \frac{1}{\sqrt{(2\pi)^{n_{\text{bins}}} \det\left(\boldsymbol{C}\right)}} \exp\left(-\frac{1}{2}\Delta \boldsymbol{x}^{\mathsf{T}}\left(\boldsymbol{c},\boldsymbol{\theta}\right)\boldsymbol{C}^{-1}\Delta \boldsymbol{x}\left(\boldsymbol{c},\boldsymbol{\theta}\right)\right) \times \prod_{i}^{n_{\text{syst}}} f_{i}\left(\boldsymbol{\theta}_{i}\right).$$
Gaussian constraint terms

Common nuisance parameters $(\vec{\theta})$ are correlated (later in more details)

 $Z\gamma$

$$\Gamma I I^{ji} \langle ij \rangle$$

Include impact of NP of expt. and theory unc

3. No nuisance parameters and both theoretical and experimental uncertainties are included

LEP

in the covariance matrix.

$$L\left(\frac{\mathscr{L}(\mu) = \exp(-\frac{1}{2}(\mu - \hat{\mu})\int_{\text{Total covariance}}^{-1}(\mu - \hat{\mu}))}{\sqrt{(2\pi)^{n_{\text{bins}}}\det(C)}}\exp\left(-\frac{1}{2}\Delta x^{T}(c,\theta)C^{-1}\Delta x\right)$$

$$\times \prod_{x}^{n_{\text{syst}}}f_{i}(\theta_{i})$$

үү

EFT to 2HDM

- Type I: one Higgs doublet couples to vector bosons, the other to fermions.
- Type II: one Higgs doublet couples to up-type quarks, the other to down-type quarks + charged leptons.
- Lepton-specific: coupling to quarks as in as in Type I, coupling to charged leptons as in Type II
- Flipped: coupling to quarks as in as in Type II, coupling to charged leptons as in Type I

Coupling scale factor	Type I Type II		
KV	$S_{\beta-\alpha}$		
κ _u	$s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$	$s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$	
К _d	$s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$	$s_{\beta-\alpha}$ -tan $\beta c_{\beta-\alpha}$	
κ_l	$s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$	$s_{\beta-\alpha}$ -tan $\beta c_{\beta-\alpha}$	
Coupling scale factor	Lepton-specific	Flipped	
κ_V	$s_{\beta-}$	α	
	4	1. 2	
K _u	$s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$	$s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$	
к _и К _d	$s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$ $s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$	$s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$ $s_{\beta-\alpha} - \tan\beta c_{\beta-\alpha}$	

The Higgs self-coupling can also be re-parametrised as $\kappa_{\lambda} = \sin^{3}(\beta - \alpha) + (3 - 2\frac{\bar{m}^{2}}{m_{h}^{2}})\cos^{2}(\beta - \alpha)\sin(\beta - \alpha) + 2\cot 2\beta(1 - \frac{\bar{m}^{2}}{m_{h}^{2}}) * \cos^{3}(\beta - \alpha)$ $\bar{m}^{2} = \frac{m_{12}^{2}}{\sin\beta\cos\beta} = m_{A}^{2} + \lambda_{5}v^{2}$ alignment line in the second secon

alignment limit: \bar{m} close to m_A -> $\bar{m} = m_A = 1$ TeV

EFT to 2HDM

(a)

JHEP11 (2024)097

0.3

 $\cos(\beta - \alpha)$

Eleonora Rossi SM@LHC2025 - 08/04/2025

 $\tan \beta$

10⁰