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mokivakions:

> the study of the Higgs boson 1s one of the priorities in the LHC experimental program, after its discovery in 2012
> the Higgs boson couplings to SM particles are proportional to their masses: special role played by the top quark!
> only about 1 % of the Higgs bosons are produced in association with a top-quark pair (first observation in 2018) but...

> the production mode pp — ttH allows for a direct measurement of the top-quark Yukawa coupling
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mokivakions:

> the study of the Higgs boson 1s one of the priorities in the LHC experimental program, after its discovery in 2012
> the Higgs boson couplings to SM particles are proportional to their masses: special role played by the top quark!

> only about 1 % of the Higgs bosons are produced in association with a top-quark pair (first observation in 2018) but...

> the production mode pp — ttH allows for a direct measurement of the top-quark Yukawa coupling

Vs =14 TeV, 3000 fb™ per experiment

| Total ATLAS and CM
—— Statistical HL-LHC Projection
—— Experimental
S Theory Uncertainty [%]
Tot Stat Exp Th the current expe.rimam&at accuracy s 020%)
c . = but, according to the HL-LHC F?rOJec&LOV\s, tk is
goH [—_. 16 0.7 08 1.2 ‘
| expec&eci to 90 down to 0(2%)
GVBF - 3.1 1.8 1.3 2.1
5 the extraction of the tTH(H — bb) signal is Limited bj
WH the theoretical uncertainties in the modelling of the
backgrounds, mainly 17bb and 1f + light-flavour jets
OZH I— 4.2 26 1.3 3.1
morecver, NLO QCD + EW theory predic:&i,m\s equipied
Oy, 43 13 18 37 with NNLL soft-gluon resummoation are affected by
IIIIIIIIIIIIIIIIIIIIIIIIIIII O(10%) uncertainty
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Expected relative uncertainty



state of the art:
[ NLO QCD corrections (on-shell top quarks)

M NLO EW corrections (on-shell top quarks)
[ NLO QCD corrections (leptonically decaying top quarks)
[ NLO QCD + EW corrections (off-shell top quarks)

M current predictions based on NLO QCD + EW corrections (on-shell top quarks), including NNLL sott-gluon
resummartion

see Alessandro’s kalle!



state of the art:
[ NLO QCD corrections (on-shell top quarks)

M NLO EW corrections (on-shell top quarks)
[ NLO QCD corrections (leptonically decaying top quarks)
[ NLO QCD + EW corrections (off-shell top quarks)

M current predictions based on NLO QCD + EW corrections (on-shell top quarks), including NNLL sott-gluon
resummartion

[ NNLO QCD contributions for the off-diagonal partonic channels
1 complete NNLO QCD predictions with approximated two-loop amplitudes
[ + complete set of EW corrections

M4 + matched with NNLL resummation see also Alessandro’s kall!




Theoretical predictions lor t#H

state of the art:

M complete NNLO QCD predictions with approximated two-loop amplitudes

main bobblenecie
Two-loop amplitudes for ttH production: the quark-initiated Nf-part

Bakul Agarwal, Gudrun Heinrich, Stephen P. Jones, Matthias Kerner, Sven Yannick Klein, Jannis Lang, Vitaly Magerya, Anton Olsson

One loop QCD corrections to gg — ttH at (9(62) Two-loop QCD amplitudes for tf H production from boosted limit

Federico Buccioni, Philipp Alexander Kreer, Xiao Liu, Lorenzo Tancredi Guoxing Wang, Tianya Xia, Li Lin Yang, Xiaoping Ye

Two-Loop Master Integrals for Leading-Color pp — tfH Amplitudes with a Light-Quark Loop

HOT TOPIC !!
F. Febres Cordero, G. Figueiredo, M. Kraus, B. Page, L. Reina




> cross section for the production of a triggered QQF final state at NXLO

crucial to keep the mass of the
heavv quark mg

all emissions are unresolved

we can exploit the QCD
foactorisaktion of the makbrix elements
i the singular soft and/or
collinear Limitks

ingredients from g, - resunmmation

gr is the transverse momentum of
the QOF system

1 [n2k-1 qr
ﬁ qr M
dqr
q;ut

to complete an NNLO computation: crucial to
consbruct an NNLO subtraction/slicing scheme
and have all scattering amplitudes available

do

do
o :/ qu J.
<q%ut dQT

dqr ——
/>q%ut dQT

1 emission s alwaus resolved
J

the complexity of the calculation is
reduced by 1 order

logarithmic IR sensitivity to the cut

dr

L Jarm + O((G5™P)



> master formula at NNLO

donio =  wwro ® doro + [doy; o — Aoy, ol g, s + O(GF"))

™ all required tree-level and one-loop matrix elements are known and can be evaluated with automated tools like
OpenL.oopsa

™ the remaining NLO-type singularities can be removed by applying a local subtraction method

M automatised numerical implementation in the MATRIX framework, which relies on the efficient multi-channel
Monte Carlo integrator MUNICH



> master formula at NNLO

doynpo = % Nnpo @ dopo + [d"ffw N dalsfj]gLO]qT>q%“t +0 ((Cﬁm)p )

™ the hard-collinear coefficient receives contributions also from the two-loop virtual amplitudes

) )"
hee HO o 2R (M) (s i) A7) \
b

| MO |?

Up=pirg=0 Qs the invariant mass

UV renormalised and IR subtracted _
of the QQOF system

amplitude at scale p;p

—
™~

2 = 3 and higher mulkiplicity
two-loop ampii&ud&s involving heavy
loops and (mas«j) external massive
legs are currently out of reach.
They require major breakthroughs



> master formula at NNLO

doynpo = % Nnpo @ dopo + [ddzéfw N dalsfj]gLO]qT>q%“t +0 ((Cﬁm)p )

™ the hard-collinear coefficient receives contributions also from the two-loop virtual amplitudes

2R(M (2)(/41R» Hg) M (O)*)

where H® = fir
PAC ~ 0
HR=Hig=C SOFT-ROSON &ppraxima&iom Fn
1. soft Limit for the mg
external boson &
\ - (EF —> O, mr — O) EF’ mr.

- : exploit the factorisation properties of
\ QCD makbrix elements in btwo da{f

Qf'eh& O&V\d \
rather t:ompi.emeh&arj kinematic regimes MASSIFICATION

2. Mgk*e_nergj Limik
(ulbra-relativistic quarks)
(my < pp)

1y~ O




> master formula at NNLO

doynpo = % Nnpo @ dopo + [d"ffw N dalsfj]gLO]qT>q%“t +0 ((Cﬁm)p )

™ the hard-collinear coefficient receives contributions also from the two-loop virtual amplitudes

2R(M (Z)WIR» Hg) M (0)*)

where H® = i
| MO
HrR=Hig=Q
disclaimer:
for 1iH, none of the two approximations is (a priori)
Cov Justified in the bulle of the events.
- The quality of the approximation must be carefully
. . g . assessed
- : exploit the factorisation properties of
\ QCD makrix elements in two di{feren& and

rather complementary kinematic regimes



> We want to study the soft Higgs-boson limit for the amplitude associated with
ar1(p1) + az(p2) — Qlps, m)O(pa, m)....0(pn+x1,m)Q(PNr2, m) + H(q, mp) one or more heavy-quark

_— : L. airs with the same mass
> at tree-level, 1t 1s straightforward to show that the LP factorisation reads P

H(q’mH)
lim ___omm = [ 700)(g) x 0 (pi.m)
g—0 o = o - =
Ty == —

(% p Pi - q

> at bare level, the naive factorisation formula holds true at all orders 1n ¢, due to the abelian nature of the Higgs boson




> We want to study the soft Higgs-boson limit for the amplitude associated with
ar1(p1) + az(p2) — Qlps, m)O(pa, m)....0(pn+x1,m)Q(PNr2, m) + H(q, mp) one or more heavy-quark

o . o airs with the same mass
> at tree-level, 1t 1s straightforward to show that the LP factorisation reads F

H(q’mH)
lim ___omm = [ 700)(g) x 0 (pi.m)
g—0 o = o - =
Ty == —

(% p Pi - q

> at bare level, the naive factorisation formula holds true at all orders 1n ¢, due to the abelian nature of the Higgs boson

> ... but the renormalisation of the heavy-quark mass and wave function changes the overall normalisation by

soft Limit of the scalar form factor for the heavy quark

(71) (2 () 27\ 2
. s o 33 185 13 . 3
F (ag D (uh), 'LL—R) = 1+ 27(T'LLR) (—3CF) + ( 27(TMR)> (ZC’% — 55 ¢rCa+t ECF(W +nn) — 3CFB"™ In _MR) +O(a™)")

™m m2



> LP master formula in the soft Higgs limit (¢ — 0, my,; < m):

m by tne all-order
./\/l(pl,pg...pN,q) ~ F((XS(ILLR);m/IuR) g (Zizl m) M(pl,pz--.pz\r) Ll-order UV

renormalised ampié&udes

» observations:

o Fla(up); m/ug) 1s per&urba&ivei.v calculable, finite and gauge-independent

o 1t can be derived by applying the so-called Higgs Low Energy theorems (LETS)

we proved the relation with the soft Limit of the
scalar FF up to three-loop order




> LP master formula in the soft Higgs limit (g — 0, my; < m):

M(p1,p2..pN,q) = Flas(pr)im/pr) o (ZN ﬂ) M (p1,pa...pN) all-order UV

1=1 p;-q renormalised amplitudes

> observations:

o Fla(up); m/ug) 1s pev&urba&vetv calculable, finite and gauge-independent

o 1t can be derived by applying the so-called Higgs Low Energy theorems (LETS)

o the IR singularity structure of the scattering amplitude 1s left changed

o the non-radiative amplitude must be evaluated on a set of projected momenta (to preserve momentum conservation)

o for the specific case of ttH production, the non-radiative amplitude is known up to two-loop order

the soft factorisation formulae could provide a PONQ%’“'" ;4
|cross check of future exact a\m[oi.i&ude calculations, in this
|  specific kinematic Lmit |




Vs =13TeV Vs =100 TeV
o [tb] g9 qq 99 qq
oLO 261.58 129.47 23055 2323.7
AoNLO H 88.62 7.826 8205 217.0
AoNLO H|soft 61.98 7.413 5612 206.0
Aoxnronlsor | —2.980(3)  2.622(0) | —239.4(4)  65.45(1)

> at NLO, difference of 5% (30%) in gg (gg) channel

> at NNLO, the hard-virtual contribution 1s about 1% of the
LO cross section 1n gg and 2-3% 1n gg

> our prescription to provide a conservative uncertainty 1s:

4 apply the approximation at a different subtraction
scale (vary u;p by a factor 2 around Q); add the two-loop

shift based on the exact tree-level and one-loop ttH
amplitudes

[ take into account the NLO discrepancy and multiply it
by a tolerance factor 3

M combine linearly the gg and gg channels



Vs =13TeV Vs =100 TeV
o [tb] g9 qq 99 qq
oLO 261.58 129.47 23055 2323.7
AoNLO H 88.62 7.826 8205 217.0
AoNLO H|soft 61.98 7.413 5612 206.0
Aoxnronlsor | —2.980(3)  2.622(0) | —239.4(4)  65.45(1)
FINAL UNCERTAINTY:

+0.6 % on oy o, 15 % on Aoy o

it is clear that the quality of the final resulk
d@.p@mds on the size of the contribution we
are appraxim&f‘:im}

» at NLO, difference of 5% (30%) 1n gg (gg) channel

» at NNLO, the hard-virtual contribution 1s about 1% of the
LO cross section 1n gg and 2-3% 1n gg

» our prescription to provide a conservative uncertainty 1s:

4 apply the approximation at a different subtraction
scale (vary u;p by a factor 2 around Q); add the two-loop

shift based on the exact tree-level and one-loop ttH
amplitudes

[ take into account the NLO discrepancy and multiply it
by a tolerance factor 3

M combine linearly the gg and gg channels
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o [pb] | +/s=13TeV | /s =100TeV
oo | 0.3910735% | 25.38 77 0%
onLo | 0.487555% 36.43 197%
onnro | 0.5070 (31)F5:9% | 37.20(25) T91%
> at NLO: +25 (+44)% at+/s = 13 (100) TeV

> at NNLO: +4 (+2)% at+/s = 13 (100) TeV

nice Far%urb&%ive converqgence with
E:heorvj uncertainties akt O3%)

- symmetrised 7-point
scale variation

onnLo/onto — 1 [%]

systematic +
soft-approximation




First differential results: “soflt-based” Higqs Eransverse

nmomentum

pp — ttH @ 13.6 TeV prp = pr = (Er¢ + Erg+ Evn)/2

- > significant reduction of the perturbative uncertainties

i NLO . . . . . .
=3 » soft-approximation uncertainty computed on a bin-by-bin basis
) - . . .
O | (NLO discrepancy multiplied by a constant tolerance factor 3)
é I
an) 2 i
=]
<= |
~— - . . .
=B > the systematic uncertainties seem to be under control, but are
| they trustable?
< 90 F
— in the tail of the pry distribution, far from
I o - Ml i the region of validity of the soft-
; 0 approximation, the systematic errors are
S “artificially” too small
E | | | |
=
0.0 —— .
- H® | e /AonNLo —H2)99 e [ ATNNLO H®99| ¢ /AoNNLO 1
—0.2 — . . . 1 . . . . 1 . . . . 1 . . . . 1 . .
2 i H(l),99|soft/H(1),gg-_
i H(l)’qqlsoft/H(1)7qq ]
) :
o 10 20 30 a0 50



First differential results: “soflt-based” Higqs Eransverse

nmomentum

pp — ttH @ 13.6 TeV pr=pr=(Ert+Eri+ Erm)/2 . . . . o
| - » significant reduction of the perturbative uncertainties
i NLO | . . . . . .
=3l NNLO » soft-approximation uncertainty computed on a bin-by-bin basis
) - . . . .
O | - (NLO discrepancy multiplied by a constant tolerance factor 3)
é I
m 2[
=]
= . .
< 1 > the systematic uncertainties seem to be under control, but are
| they trustable?
g 28 = L L L L | ! ! ! ! | ! ! ! ! 1 L f 1 i
T ; P s IE' Y = |_|
®,
> 0 N
3 ~ ¢
N e s SR ) to make our predictions more robust at the
= ] 8 differential level we “combine” the
oop—— e APPROXIMATION with a
‘ H® | e /AonNLo —F 2588} oo [ AoNNLO H®99) ¢ /AonNLo QXFO\MSE"OM
—0.2 e ———————————— .
2 i H(l),99|soft/H(1),gg-_
I HWaa) . g(1)ad -
-
o 10 20 30 a0 50



il formutation Mass lactorisation or massilication

> tdea: reconstruct the massive amplitudes, in the ultra-relativistic quark limit m << Q, up to power corrections @(mz/ Q2)

» If contributions from keavquuarw* Lwops are neqglected, the master formula 1s

quarks with a mass m "m2’ i MS scheme with 7, running quarks

r 5 N\ 1O /2
we are “dressing” 1, external |./\/lm> — ( 7 [(57]40) ( Oé(nl) H 6) ) | ./\/l> all-order UV renormalised amplitudes
S

. J

universal, perturbatively computable, ratic between massive and massless FFs

b '\

_ Q2 m?2 . _ QQ N -1
Q—F] ( T al™ (p?), e F(E‘WF] ﬁv&g (1), € ifj

poama e s o — s ST A Mgk B L b e g oo ias o ) S [P VI S T e e SR o A S g 24 oo e S ) S T TR B

1. all € poles, n;-independent
Llogarithms of the mass and finite
terms of the massive amplitude are

Predi«t&ed

the mass “screens” —m—pp 2. ik caln be viewed as a change in
collinear sihgui&rﬁ&ies 'P@.SMLOLT'LSO&E,OV\ scheme



generalised formulation MaSS fﬁ@t@l”ﬁ@@tﬂ@n or m@SSﬁﬁCaﬁ@H

» If contributions from k@.o\\/jmquaww Loops are included, a non-trivial soft function emerges starting from 0552

» the master formula gets modified as

1/2
Moy =TT 7o (o 12 s (o) £ |y
‘ m>—H [z] X s 7m27€ s ) ”7m27€ | >

1

_all-order UV renormalised amplitudes
i MS scheme with 1, = n; + 1, runining quarks

2 92 (ng) /2y \ 2
(ng) M B as 7 (p?) oy (17 M 3
S<O‘Sf’sij’m2’€)_1+< - )nhE;(Ti-Tj)S()( --’m2’€)+0(0‘8

2 2 2\ 2€
420 112 4G g,
with (sij m2’ "\ m?2 3¢2  9¢ 27 3 )\ m?

| for the speci{ic case of QQH Produ&:&mn we can reconskruct the massive |
‘ amyii&udes, up to power corrections in the heavy-quark mass, bv
exploiting the corresponding (nown) massless amplitudes 5‘;

l

kl
T, T,
k2



HOOAmMp: a massive C++ implementation

» idea: implement the one-loop and two-loop massless amplitudes of in a C++ library for the efficient
numerical evaluation of the massive amplitudes

> different workflow and possibility of choosing the precision for the MIs and relative coetficients

q/9(p1) +q/g(p2) — H(ps) + Q(ps) + Q(ps)

: massless PS point

X = {ﬁ13ﬁ29p3ap49ﬁ5}’
scale y, heavy-quark mass m,
partonic channel

: one-loop and two-loop massless
finite remainders in LCA
(Catani’s scheme)

: Pentagonkunctions-cpp
evaluation of the pentagon functions

: one-loop and two-loop massive

finite remainders in LC-FC
(minimal subtraction scheme)

: OpenLoops 2
evaluation of the exact Born
and one-loop massless amplitudes

evaluation time per phase space point:

O(2 — 3s) for both partonic channels
[quadruple (double) precision for the coefficients (MIs)]

cross—checked against an E,M%e_pencieh&
implementation for bbH 14
see Christian’s kalle!



HOOAmMp: a massive C++ implementation

» idea: implement the one-loop and two-loop massless amplitudes of

in a C++ library for the efficient

numerical evaluation of the massive amplitudes

> different workflow and possibility of choosing the precision for the MIs and relative coefficients

2 2 2 2
finy, _ rp—1 (ng) K H (m|0) (ng) M (m|0) (ng) K
|Mm> o Zm<<,uh (aS y 37,] y m2 ’ 6) Z[Q] <Oé5 y m2 y 6) Z[C] (Oés y m2 9 6)
5 5 5 \ : one-loop and two-loop massless
n n m | : . .
< S <ag f), M | M276> Z(m:()) <&g f>7 ,u_7€> ’M?f,?z:())> + 0O <_> ~ finite rema%l’nders in LCA
Sij m Si;j LA (Catani’s scheme)
2 2
n v v n m
=le (&g . e s) ‘M?m=0)> +0 (H_)
% " 'MASSIFICATION
| M(l),ﬁn> _ Mgl),ﬁn)> n ]_-El]) MEO) )> | : ‘ : one-loop arzld two-loop massive
m m=0 C m=0 : finite remainders in LC-FC
M(Z),ﬁn> _ M(2),ﬁn > 4 j:(l) M(l),ﬁn> 4 ,7:(2) |M(O) > . | (minimal subtraction scheme)
m = M (m=0) e 1"V (m=0) ] 1MV m=0)/ :

Yukawa renormalised ON-SHELL

N.B. application of the massificakion directly on the finike remainders 15



Quality of both approximations at INLO

SetU.p: NNLO NNPDF40, mH —_ 125.09G€V, mt — 172.5G€V, //tR —_ MF — (ETJ + ET’ZT + ET,H)/2 di{“f@.f‘@.%& SQ_EMF!

pp — ttH (qq) @ 13.6 TeV pr=pr=(Er¢+ Erz+ Ern)/2
i | :
— 0.04 : HW H&A,Fc :
L [ A (1) 1 ]
O 0.03F Hsx — Hy) 1 -
él = .
T 0.02 ‘ ]
= i
13‘ -
o 0.01F _
B o
0.00 F !
0.15
around the Feo\h:: 0.10:—

1. FC-FC massification and soft
approxima&iw\ are meartj
equ.évai.eh&

2. LC-FC massificakion
overestimates the exact result
by almost a factor of 2

do /do gy — 1[%]

i the high-p; tail:

1. missing subleading colour contributions are less relevant _
2. soft approximation underestimates the exact result: 0(2%) 2000 100 &0 80 1000
difference of the NLO cross section pr. [GeV]




0.100
0.075
20
X
= 0
|
o= —20
S
~
<
—40

0.6

Quality of both approximations at INLO

pr.u |GeV]

pp — ttH (gg) @Q 13.6 TeV pr=pr=(Ers+Eri+ Ern)/2

| HO — e

i () 1 1
Ar Hgx — HlS/I?A,LC )

0 200 400 600 800 1000

massified results are in
good agreement with
the exact one-loop,
with negligible effects
own the NLO cross
section in the tail

soft-approximated resulk is
systematically below the
exact one-loop, with

effects of O(8%) of the NLO
cross section n the tail

do /do gy — 1[%]

pp — ttH (qq) @ 13.6 TeV

different setup!

pr=pr=(Er¢+ Erz+ Ern)/2

HY = Hy) pe
— (1) 1
Hgy — HIS/IA,LC ’

50:

400 600 800 1000

pT,H [GGV]

16



First dillerential results: "best”™ H* prediction

JHEP 03 (2025)]

Hl-based error

Orr(1)
(1) H
ol =92 22 — 1| x max (|0, @], |0, @ |
SA H YITH
O'H(l) SA MA
O,,(1 O,,(1
HO H\IA pe HyiA 1c
A = 2 X max —1 — 1] | x max (|o, |, [0 |
Opr(1) Op7(1) SA MA

Uir—variation error

Y

4 = max (|2 50 + (Q/2 > Q) = o2

i = max ([oige) g + (@/2 = Q) = oy

)

T 2q) T (20 = Q) — oy )

Tu®) 2 T (2Q = Q) — oy )

the final systematic error on each approximation and for each partonic
channel is obtained by taking the maximum between §® and 5

“bES&” ‘F(}T' each FQT&OME,C channel: Oy (2)

best

Obest
the errors on each channel are °

finally combined quadratically

1

WSA + WMA

( | >1/2
WSA T WMA

WSAT,,(2) T WMAO (2))
(S Hgx Hypa

1. the “best” prediction nicely interpolates between the two Limits
2. the associated error does not vary strongly over the p;y range

3. the individual soft and massified predictions have overlapping error bands

pr=pr = (Er¢+ Ers+ Ern)/2

<
)
T~

=
-
S

0. ..(2 :|:5
Hi@), * oma

do pr2) /dONNLO
(a»)
o
[\

|
-
o
NG

—0.04

E O-H(Q) :l: 5best
best

0.050

0.025

g9
dUH@) /dUNNLO

MATRIX + HQQAmMpP

pT,H [GGV]
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pp — ttH @ 13.6 TeV

pr =pr=(Ert+ Evr;+ Etn)/2

<

&= LOqcp

&= NLOqcp
= NNLOQCD :
@ NNLOgcp + NLOgyw |

total XS ok fixed scale pp = up = m, + my/2

svsﬁemo&w error associated
with the “best” prediction for

the double-virtual
conkribubtion

Vs = 13.6TeV o [fb]
LOqcp 423.9 fgg:g;‘; (scale)
NLOqcp 528.9 5 7%(scale)
NNLOgqcp 550.7(5) “_Lg (1)(;‘( cale) +0.9%(approx)
N NLOZ‘&’%}D 548.7(5) T g;‘( le) +0.6%(approx)

> NNLO QCD predictions based on the soft-approximated

and “best” double virtual are fully compatible:
difference of 0.4%

the systematic uncertainty based on the refined
prescription is slightly larger: ©(0.9%) instead of
0(0.6%) of the NNLO cross section



pp — tTH @ 13.6 TeV pr=pr = (Ers+ Erg+ Brn)/2

= LOQCD
= NLOqcp
&= NNLOqcp

— NNLOQCD+NLOEW |

0 200 400 600 800 1000
pT,H [GeV]

positive (negative) subdominant LO
and NLO corrections in the small 18

(large) pry region

total XS ot fixed scale pp = pup=m, + my/2

/5 = 13.6TeV o [fb)
LOqcp 423.9 F307%(scale)
NLOgqcp 528.9 *o gg’ (scale)
NNLOqcp 550.7(5) T3 ?5’ (scale) +0.9%(approx)
NNLOqgcp + NLOgw  562.3(5) f; éé(sca e) +0.9%(approx)

> 1nclusion of all subdominant LO (@((x a?), O(a?))
and NLO (@(azaz) O(a, a?), O(a™)) contributions:
+2 % at the cross section level

q t b z
Z
~<H W ----H + Pha&o»wimduceci diagrams
q [ b r

MQM“MQQLLQLM@. x,m?o&:% tomyo\raci
o NNLO scale-variakion bands



pp — ttH at the LHC

050 my = 125 GeV

625

X

600 N
o 5751 O

550 -

525 1

—
-
S

Ratio /onr0

NNLO = NNLO+EW NNLO+NNLL+EW

100 ! I T T T T
13.0 13.2 13.4 13.6 13.8 14.0

V'S [TeV]

for the NNLO QCD corrections and O(+2%)
for the EW ones, roughly independent on the
collider enerqgy and Higgs mass

> according to the recommendations of the LHC HWG, we have

recently provided state-of-the-art predictions for the frH total
cross section by matching our fixed-order NNLO predictions
with soft-gluon resummation up to NNLL

SCET 4+ 54QCD
_ ONNLO+NNLL NNLO+NNLL
ONNLO+NNLL = 5

> extensive comparisons between the two resummation approaches

SCET: AQCD: see Alessandro’s kalie!

> 1nclusion of the subleading LO and NLO contributions

3 4

ONNLO+NNLL+EW = ONNLO+NNLL *+ E 0LO,i + E :JNLOJ
i=2 j=2

1. regardless of the framework, the central prediction is affected
bj only 0.1%

improved stability under variations of the central scale

3. the scale depemdenae s further reduced to 0(1.5 —2%)

»
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» different sources of theoretical uncertainties:

*

*

*

missing higher orders estimated via 7-point scale variation

PDF and a; uncertainties: Appr=2.2% and A, = 1.7%

approximation of the double virtual: A .. = 0.9 %

virt

numerical and g;-extrapolation: ©(0.3%)
ambiguities in the resummation approach: ©(0.1%)

uncertainties related to the m, value and renormalisation
scheme: negligible

all qum&cﬁ& Fheoretical uncertainkies have a
W&zgligibiﬂ d@pﬁmd@mea on khe collider
energy and my value considered it our work

10 -

Scale uncertainty [%)]

1

pp — ttH at the LHC

Mg — 125 GeV

— NLO —— NNLO+EW
NNLO NNLO+NNLL+EW

— 0" =07 == max(|§7],[07)

13.0 132 134  13.6 138
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> As the LHC has entered 1ts ““precision” phase, more accurate theoretical predictions are of paramount importance

> the current frontier 1s represented by NNLO corrections for 2 — 3 processes with several massive external legs

main bolblenecie: Ewo-—-i.c:-c)[a ampd&ud&s

> the associated production of a Higgs boson with a top-quark pair (tH) belongs to this category and it is crucial for the
measurement of the top-Yukawa coupling

> sEraEagj: develop physically motivated, reasonable and reliable approximations for the double-virtual contribution
SOFT-BOSON APPROXIMATION MASSIFICATION

> we have “updated” our previous prediction for the NNLO QCD total cross section by designing a more solid estimate
of the double-virtual contribution based on both approximations

> the quantitative impact of the genuine two-loop contribution, 1n our framework, 1s relatively small (~1% on oyp; )

> thus, we have achieved good control of the systematic errors and a reduction of the perturbative uncertainties

> we have shown differential results for the Higgs transverse momentum

> we have included the full tower of EW corrections and matched our fixed-order results with the NNLL soft-gluon
resummation, in accordance with the recommendations of the LHC HWG

state~of-the-art predmﬁoms for tiH ! .



Thank you for your attention!






NNLO QCD + EW predictions

more diskribubtions ...

pp — ttH @ 13.6 TeV
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extreme reduction of
the scale uncertainties

no overlapping bands

constant shift

pp — ttH @ 13.6 TeV
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pp — tEH @ 13.6 TeV pr = pr = (Bry + B g + Brn)/2

“correlated” Hl-based error 0,08

= o0 + Obest lcfc

Hbest,lcfc

. O,7(2) :t(sbest,fcfc

Hbest,fcfc

[JHEP 03 (2025)]

o

= 0.04

& ~ .

'B () T I i -

\@ U-u2 | = [Badger et al. (2024)]

§ 0.00 =" inclusion of the SLC in the two-loop

MASSLESS pp — bbH amplitudes,
entering the construction of the
massified (MA) result

1. huge effects of the SLC massless
terms on the MA resulk

2. h@h*Prech&WLEj of the massification
i this region, reflected bfj
corresponding huge systematic
errors

3. “artificial” blow-up of the SA error,
due ko our correlated Hl-based
error estimate

da%g@) /dO'NNLO

- 0.05 7 1. negative (O(—30%)) impact on the hard-
= virtual contribution of the SLC two-loop
& massless terms, included in the MA resulk
2 2. sensible reduction of the yp-variation
< 5 errors

S

=

... still ko be further investiqated 0 200 400 600 80 1000 I
PT.H [GGV]



