

Advances in ttH/tH

on behalf of the ATLAS and CMS collaborations

Standard Model at the LHC 2025 April 7-10, Durham

G. Pezzullo

Yale University

- Top Yukawa interactions and $t\bar{t}H/tH$ production cross-section
- Coupling/STXS with $t\bar{t}H, H \rightarrow b\bar{b}$ @ATLAS and CMS
- Coupling/STXS with $t\bar{t}H, H \rightarrow \tau\tau$ @ ATLAS
- Coupling/STXS with $t\bar{t}H, H \rightarrow WW$ or $H \rightarrow \tau\tau$ @ CMS
- CP nature of the Top-Higgs coupling in $t\bar{t}H, H \rightarrow b\bar{b}$ @ ATLAS and CMS
- Summary

Outline

Top Yukawa interaction

- Higgs boson couples to fermions proportionally to their mass
 - The Top quark is the heaviest in the SM -> largest Yukawa coupling $\lambda_t = \frac{m_t \sqrt{2}}{2}$
 - ggF and $H \rightarrow \gamma \gamma$ enable indirect access to λ_t in a model-dependent way ullet
 - Sensitive probe to physics beyond the standard model (BSM) \bullet
- Top-associated Higgs production provides a direct access to λ_{t}
 - $t\bar{t}H$ is the best process for measuring λ_t ; tree-level process $\sigma_{t\bar{t}H} \propto \lambda_t^2$, $\sigma_{t\bar{t}H} \sim 0.5$ pb ullet
 - tH has a lower xsec ($\sigma_{tH} \sim 0.09$ pb), but the interference between the Top and the W • couplings is sensitive to the sign of λ_t and BSM effects

G. Pezzullo (Yale University)

Measuring $t\bar{t}H/tH$ production xsec $t\bar{t}H$ production mode observed combining several final states in <u>ATLAS</u> Stage 1.2 $t\bar{t}H$ p_T^H 0 $t\bar{t}H$ is part of the **Simplified Template X-Section** analysis **60** 120 $t\overline{t}$ decays "alljets" 46% $\mathbf{200}$ *gg* au auτ+jets 15% 300 cē 450 $\mathbf{Z}\mathbf{Z}$ $\gamma\gamma 0.2\%$ ∞ t+e 1% µ+µ 2% µe+e 2% <mark>μ+jets</mark> 15% other 0.2% *e*+jets 15% "lepton+jets"

- Large variety of final states: Higgs + Top quark(s) decays
- and <u>CMS</u> with $> 5\sigma$ significance
- tH not yet observed
- \bullet
 - Used to study the Higgs couplings in bins of p_T^H ulletH decays

G. Pezzullo (Yale University)

- New analysis of the full Run 2 dataset Eur. Phys. J. C 85 (2025) 210 superseding the previous one <u>JHEP 06 (2022) 97</u>
- Events categorized based on the $t\bar{t}$ decay: single- and di-lepton channels
- The single-lepton channel uses two separate categories: boosted and resolved
 - The boosted category selects high-pT Higgs (pT>300 GeV) making a collimated large-R jet
- Large and irreducible background from $t\bar{t}+b-jets$
- Major improvements of this analysis:
 - Advanced *b*-jet identification algorithm \bullet
 - Improved $t\bar{t} + n \ge 1$ b-jet modeling using new Monte Carlo sample with optimized POWHEG+PYTHIA8 parameters with better associated systematics (ATL-PHYS-PUB-2022-006)

G. Pezzullo (Yale University)

Coupling/STXS with $t\bar{t}H, H \rightarrow b\bar{b}$ @ ATLAS

Coupling/STXS with $t\bar{t}H, H \rightarrow bb$ @ ATLAS

- For the single-lepton (dilepton) channel signal region, >97% (94%) of the Higgs decay mode is $H \rightarrow bb$ followed by $H \rightarrow WW$ decays
- Enhanced categorization and classification allowed loosen the preselection cuts and >x3 the signal acceptance
- The boundaries of the regions are optimized to maximize the fraction of the events with the corresponding truth $p_{\rm T}^{H}$

Coupling/STXS with $t\bar{t}H, H \rightarrow b\bar{b}$ @ ATLAS

- Simultaneous profile likelihood fit with 13 SRs and 13 CRs
 - Signal x-sec and background normalization free floating
- Observed (expected) signal significance: 4.6 (5.4) σ
 - Compared to I.0 (2.7) σ in previous round
- The measured signal strength is $\mu_{t\bar{t}H} = 0.81 \pm 0.11(\text{stat.})^{+0.20}_{-0.16}(\text{syst.})$
- Full STXS stage I.2 (6 Higgs pT bins)
 - STXS Compatibility with SM: 89%
- Sensitivity dominated by signal modeling, $t\bar{t} + n \ge 1b$ -jet modeling and b-tagging
- Best accuracy achieved so far in inclusive and differential!

								Stat. anly		Theory
		$\sqrt{s} = 13$	⊃ TeV, 1	40 fb ^{−1} , m	n _H = 125.	09 GeV	Total	(Stat.	Syst.)	rneory
p _T ^H ∈[0,60) GeV	-				I	1.25	+ 0.69 - 0.65	+ 0.52 - 0.51	+ 0.46 - 0.40	_
p _T ^H ∈[60, 120) GeV	╞	н		H		0.77	+ 0.54 - 0.52	+ 0.41 - 0.40	+ 0.35 - 0.32	_
p _T ^H ∈[120, 200) GeV	-					0.88	+ 0.46 - 0.43	+ 0.34 - 0.33	+ 0.31 - 0.28	_
p _T ^H ∈[200, 300) GeV	-	H				0.77	+ 0.44 - 0.42	+ 0.36 - 0.35	+ 0.26 - 0.24	_
p _T ^H ∈[300, 450) GeV	\vdash	 				0.27	+ 0.55 - 0.54	+ 0.44 - 0.42	+ 0.33 - 0.33	_
p _T ^H ∈[450,∞) GeV	╞					0.63	+ 0.89 - 0.83	+ 0.76 - 0.71	+ 0.47 - 0.43	_
Inclusive	 					0.81	+ 0.20 - 0.18	+ 0.11 - 0.11	+ 0.17 - 0.15	
			<u> </u> 1		2	 3	/	5	6	
1		0	I			U		0	σ _{tīH}	/ σ SM

Coupling/STXS with $t\bar{t}H, H \rightarrow bb$ @ CMS

- New analysis of the full Run 2 dataset <u>HEP02(2025)097</u> superseding the previous one <u>CMS-PAS-HIG-19-011</u>
- Three channels are considered based on the $t\bar{t}$ decay: fully hadronic, single- and di-lepton
- Large and irreducible background from $t\bar{t}$ +b-jets
- Each channel categorizes the events based on the jet and b-jet multiplicity
- QCD multijet background not well modeled by the MC simulation in the fully hadronic channel -> data-driven estimate

G. Pezzullo (Yale University)

Coupling/STXS with $t\bar{t}H, H \rightarrow bb$ @ CMS

- The signal categories are optimized for the inclusive measurements as well as for the coupling and CP measurement
- For the STXS, five additional sub-categories are added for the $t\bar{t}H$ signal (corresponding to the 5 STXS bins)
- In the channels with leptons, events are separated based on the jet and b-tagged jet multiplicity
- In each of the two SL categories and in the (\geq 4 jets, \geq 3 b tags) DL category, events are further categorized based on the output of multi-classification ANNs, which are designed to separate between different signal and background processes
 - The output values of the ANNs are subsequently used to compute the final discriminant R_{SL} \bullet

G. Pezzullo (Yale University)

Distribution in template fit, event yield (Y), ANN output (O), likelihood ratio of ANN outputs (R)

Coupling/STXS with $t\bar{t}H, H \rightarrow bb$ @ CMS

- Simultaneous binned profile likelihood fit with in all channels
 - Background normalizations free floating ullet
- Observed (expected) signal significance: 1.3 (4.1) σ
- The measured signal strength is $\mu_{t\bar{t}H} = 0.33^{+0.17}_{-0.16}(\text{stat.})^{+0.20}_{-0.21}(\text{syst.})$
- Full STXS stage 1.2 (5 Higgs pT bins)
 - STXS Compatibility with SM: 81% ullet
- Systematics with larger impact from $t\bar{t}B$ modeling, jet energy scale and collinear gluon splitting

	CMS			138 fb⁻¹ (13 TeV)			
		μ	tot	stat	syst		
p _T ^H ∈ [0, 60[(GeV)	┝┼──╋──┼─┤	0.40	+1.93 –1.77	+1.24 -1.24	+1.47 -1.25		
p _T ^H ∈ [60, 120[(GeV)	▶	0.06	+1.37 -1.41	+1.01 -1.01	+0.92 -0.98		
p _T ^H ∈ [120, 200[(GeV)	ŀ ⊢ œ + 1	1.15	+0.95 -0.86	+0.69 -0.69	+0.66 -0.52		
p _T ^H ∈ [200, 300[(GeV)	⊦ ∙-∎-+1	0.19	+0.88 -0.90	+0.65 -0.65	+0.60 -0.61		
p _T ^H ∈ [300, ∞[(GeV)	⊦₊₋æ₋₊ı	-1.04	+0.96 -0.99	+0.75 -0.73	+0.60 -0.68		
	0	5	5	 _	10		
G. Pezzullo (Yale University)				$\hat{\mu} = \hat{e}$	σ̄/σ _{SM}		

- An upper limit @ 95% C.L. wrt the SM expectation of 14.6 is observed, with an expectation of $19.3^{+9.2}_{-6.0}$
- Performed also a simultaneous fit of the μ_{tH} and $\mu_{t\bar{t}H}$ with best-fit values of (-3.83, 0.35)

G. Pezzullo (Yale University)

Coupling/STXS with $tH, H \rightarrow bb$ @ CMS

Differential xsec of $t\bar{t}H, H \rightarrow \tau\tau$ @ ATLAS

- Previous analysis <u>HEP 08 (2022) 175</u> of the $H \rightarrow \tau \tau$ final state in the four main production modes. [HEP 03 (2025) 010 supersedes the previous one and extends the study of $t\bar{t}H$ production in the STXS framework
- Events categorized to split the main production modes:VBF, V(had)H, $t\bar{t}H$ and Boosted (ggF) with high $p_{\rm T}^H$)
- For $t\bar{t}H, H \rightarrow \tau\tau$, the full hadronic final state is selected \bullet
 - Six jets including at least one b-tagged jet, or five jets including at least two b-tagged jets
- A BDT multi-classifier is used to separate the signal from $Z(\rightarrow \tau \tau)$ and $t\bar{t}$ events \bullet
- By inverting the requirement on the score separate control regions are defined
- Three p_T^H bins included for the $t\bar{t}H, H \to \tau\tau$ STXS interpretation: $[0, 200, 300, \infty)$ GeV

- The fit model accounts for the various channels:
 - For $t\bar{t}H$, 6 SRs and 2 CRs lacksquare
- CRs constrain the event yield of specific backgrounds
- The resulting $t\bar{t}H$ inclusive x-sec wrt to the SM is measured to be $0.77^{+1.02}_{-0.92}$

Differential xsec of $t\bar{t}H, H \rightarrow \tau\tau$ @ ATLAS

			гт	<u> </u>	
	ATLAS	' Η→ττ	s	- = 13 Te\	∕, 140 fb ⁻¹
	-Tot. ∎Syst. ⊗Theory	p-valu	ie = 6	%	
			Tot.	(Stat.	Syst.)
p ^H _T < 200 GeV	•••	0.35	+0.61 -0.61	(^{+0.38} 0.37	$^{+0.49}_{-0.48}$)
р _т ^н < 120 GeV		0.50	+0.89 -0.89	(+0.52 -0.52	+0.72 -0.72)
р _т ^н < 200 GeV		0.53	+0.75 -0.74	(+0.49 -0.48	$^{+0.57}_{-0.56}$)
p ^H _T < 200 GeV	ب	5.09	+3.09 -2.49	(^{+1.66} 64	+2.61 -1.87)
p _T ^H < 300 GeV		0.99	+0.39 -0.36	(+0.28 -0.28	+0.27 -0.22)
$p_T^H \ge 300 \text{ GeV}$	*	1.51	+0.59 -0.50	(+0.44 -0.43	+0.39 -0.26)
m _{ji} < 120 GeV		0.94	+0.68 -0.65	(+0.57 -0.55	+0.38 -0.36)
p ^H _T < 200 GeV	F 1	-0.96	+1.17 -1.31	(+0.83 -0.81	+0.81 -1.03)
p _T ^H < 200 GeV	H	-0.24	+0.79 -0.89	(+0.63 -0.60	+0.49 -0.65)
p _T ^H < 200 GeV	P <mark>e</mark> 4	1.68	+0.61 -0.55	(+0.50 -0.47	+0.35 _0.29)
p ^H _T < 200 GeV	H	0.12	+0.34 -0.33	(+0.30 -0.27	+0.16 -0.18)
$p_T^H \ge 200 \text{ GeV}$	1	-1.16	+0.87 -0.81	(+0.75 -0.55	+0.44 -0.59)
$p_T^H \ge 200 \text{ GeV}$	ı ∔ ı	0.98	+0.73 -0.63	(+0.67 -0.59	+0.28 -0.23)
p _T ^H ≥ 200 GeV	i ∎∎	1.40	+0.56 -0.50	(+0.52 -0.47	+0.20 -0.18)
$p_T^H \ge 200 \text{ GeV}$		1.29	+0.39 -0.34	(+0.35 -0.32	+0.18 -0.13)
р ^н _т < 200 GeV		2.1	+1.8 –1.5	(^{+1.5} _1.3	+0.8 _0.8)
p ^H _T < 300 GeV		-2.2	+1.3 –1.1	(+1.1 -0.8	+0.6 _0.8)
$p_T^H \ge 300 \text{ GeV}$		3.6	+2.9 -2.3	(+2.6 -2.1	+1.3 _0.9)
	0 5	10		15	20

gg→H, 1-jet, 120 \leq gg→H, ≥ 1-jet, 60 ≤ gg→H, ≥ 2-jet, m_{..} < 350, 120 ≤ $gg \rightarrow H, \ge 2$ -jet, $m_{ij} \ge 350 \text{ GeV}_{ij}$ gg→H, 200 ≤ gg→H $qq' \rightarrow Hqq', \geq 2$ -jet, $60 \leq$ $qq' \rightarrow Hqq'$, ≥ 2 -jet, $350 \leq m_{ii} < 700 \text{ GeV}$ $qq' \rightarrow Hqq'$, ≥ 2 -jet, $700 \leq m_{\mu} < 1000 \text{ GeV}$ $qq' \rightarrow Hqq', \ge 2$ -jet, $1000 \le m_{\mu} < 1500 \text{ GeV}$ $qq' \rightarrow Hqq', \ge 2$ -jet, $m_{_{\parallel}} \ge 1500 \text{ GeV},$ $qq' \rightarrow Hqq'$, ≥ 2 -jet, $350 \leq m_{\mu} < 700 \text{ GeV}$, $qq' \rightarrow Hqq'$, ≥ 2 -jet, $700 \leq m_{\mu} < 1000 \text{ GeV}$ $qq' \rightarrow Hqq', \ge 2$ -jet, $1000 \le m_{\mu} < 1500 \text{ GeV}$ $qq' \rightarrow Hqq', \ge 2$ -jet, $m_{ij} \ge 1500 \text{ GeV}$ ttH ttH, 200 ≤

 $(\sigma \times B)^{\text{meas}}/(\sigma \times B)^{\dagger}$

Differential xsec of $t\bar{t}H, H \to WW$ or $H \to \tau\tau$ @ CMS

- New analysis of the full Run 2 dataset CMS-PAS-HIG-23-015 superseding the previous one Eur. Phys. J. C 81 (2021) 378 Events categorized based on number of light leptons and τ_{had} :
- - $2\ell ss + 0\tau_{had}, 2\ell ss + 1\tau_{had}, 3\ell + 1\tau_{had}$ \bullet
- Dedicated training of a Deep Neural Network in each channel involving three classes: $t\bar{t}H$ -, tH- and background-like An additional $t\bar{t}W$ -like class was included in the 2ℓ ss+ $0\tau_{had}$ channel \bullet
- Irreducible background from $t\bar{t}Z$ and $t\bar{t}W$
 - Contributions derived from 3 different CRs: $t\bar{t}Z+WZ$, $t\bar{t}Z+ZZ$ and $t\bar{t}W$ enriched \bullet
- Reducible background from: misidentified leptons and τ_{had} , asymmetric photon conversions into electrons and lepton charge mis-measurement
 - Predicted using data-driven methods
- Measurement performed in bins of p_{T}^{H} and $m_{t\bar{t}H}$

- Signal extracted from profile likelihood ratio fit to the DNN score
 - 3 SRs + 2 CRs used
- The measurement is stat limited
- The main sources of syst uncert are from misidentified lepton and charge mismeasurement as well as theory uncert

G. Pezzullo (Yale University)

\mathbb{CP} CP nature of the Top-Higgs coupling in $t\bar{t}H, H \rightarrow b\bar{b}$

- SM predicts the Higgs boson to be a CP-even particle ($J^{CP} = 0^{++}$, scalar)
- Signs of pure CP-odd or CP-mixed couplings to SM particles would be a hint of BSM
- Effective Lagrangian describing top Yukawa coupling can be parametrized as:

$$\mathscr{L} = -\frac{m_t}{v} \{ [\bar{\psi}_t \kappa_t' c] \}$$

- κ_t : coupling modifier parameter (SM: $\kappa_t = 1$) $\rightarrow \kappa_t \neq 1$ leads to variations in the cross-section
- α : CP-mixing angle. SM predicts $\alpha = 0^{\circ}$ while pure CP-odd $\alpha = 90^{\circ}$ lacksquare
- CP properties of the top Yukawa coupling can be directly probed through $t\bar{t}H/tH$ processes
 - Exploiting $H \rightarrow \gamma \gamma$ and $H \rightarrow bb$ \bullet

G. Pezzullo (Yale University)

 $\cos(\alpha) + i\kappa_t'\sin(\alpha)\gamma_5]\psi_t\}H$

CP nature of the Top-Higgs coupling in $t\bar{t}H, H \rightarrow b\bar{b}$ @ ATLAS

- Similar strategy to previous iteration of $t\bar{t}H, H \rightarrow b\bar{b}$ cross-section analysis with full Run 2 data [HEP 06 (2022) 97] BDTs used for event reconstruction and event classification (optimized for SM $t\bar{t}H/tH$) \bullet

 - Considering $t\bar{t}H$ and tH as signals lacksquare
- Dedicated CP sensitive observables are built relying on angular separation between reconstructed top quarks **b2**: enhanced for narrower azimuthal separation of top quarks in CP-odd case ullet

 - **b4**: enhanced for top quarks in opposite directions and closer to the beamline ullet
 - Used as fitting observables in the signal regions

- Best fit values:
 - CP-mixing angle $\alpha = 11^{\circ+52^{\circ}}_{-73^{\circ}}$
 - Coupling strength $\kappa'_t = 0.84^{+0.30}_{-0.46}$
- Compatible with $\alpha = 0^{\circ}$ and $\alpha = 90^{\circ}$
- Data prefers SM and disfavors CP-odd hypothesis at 1.2σ significance
- Sensitivity driven by the $t\bar{t} + n \ge 1b$ -jets modeling uncertainties:
 - Same as in previous round of $t\bar{t}H, H \rightarrow bb$ analysis
 - Would benefit greatly from the improved modeling

CP nature of the Top-Higgs coupling in $t\bar{t}H, H \rightarrow b\bar{b}$ @ ATLAS

PLB 849 (2024) 138469

- In the same $t\bar{t}H, H \rightarrow bb$ coupling paper (JHEP02(2025)097), CMS delivered results also about the CP structure of the top-Higgs coupling
- Best fit values: $(\kappa_t, \tilde{\kappa}_t) = (+0.53, 0.00)$
- Data prefers SM and disfavors CPodd hypothesis at 2σ significance

CP nature of the Top-Higgs coupling in $t\bar{t}H, H \rightarrow b\bar{b}$ @ CMS

JHEP02(2025)097

The results were also expressed in terms of \bullet **CP-odd fraction**: $f_{CP} = \frac{\tilde{\kappa}_t^2}{\tilde{\kappa}_t^2 + \kappa_t^2} \operatorname{sign}(\tilde{\kappa}_t / \kappa_t)$, **CP mixing angle**: $\cos \alpha =$

G. Pezzullo (Yale University)

- ATLAS and CMS delivered many measurements of the Top-Higgs Yukawa coupling
- ATLAS and CMS recently published improved results on the STXS for $t\bar{t}H, H \rightarrow bb$
 - In both experiments, the STXS compatibility with the SM is > 80% \bullet
- CMS delivered a new upper limit at 95% C.L. on the tH production x-section of 14.6 times the SM prediction
- ATLAS delivered an updated STXS measurement for $t\bar{t}H, H \rightarrow \tau\tau$ using the full Run 2 dataset
- ATLAS and CMS probed the CP nature of the Top-Higgs Yukawa coupling in $t\bar{t}H/tH, H \rightarrow bb$
 - Data prefers SM and disfavors CP-odd hypothesis at 1.2 σ significance in ATLAS and 2 σ in CMS

Summary

Backup slides

ATLAS and CMS experiments

- 2 magnet systems (central 2T solenoid and large toroids in muon spectrometer)
- electron scale uncertainty ~0.7% in central region
- muon momentum scale uncertainty 0.05%
- τ energy scale uncertainty 2% (3%) for I- (3-) prong τ -lepton

G. Pezzullo (Yale University)

- one large 4T solenoid
- electron scale uncertainty ~0.3% (central region)
- muon momentum scale uncertainty 0.2%
- T energy scale uncertainty < 1.2%

Coupling/STXS with $H \rightarrow \gamma \gamma$

- Small BR but clear signal peak and low background
- Refined event categorization using Multiclass and binary BDTs \rightarrow 13 dedicated to $t\bar{t}H/tH$
 - Using $m_{\gamma\gamma}$ as discriminant in the signal extraction fit ullet
- κ_t probed with two different configurations
- **Resolved**: κ_t in ggF and H $\rightarrow \gamma \gamma$ loops
- **Effective**: effective coupling (κ_g and κ_γ) fixed to the SM prediction

G. Pezzullo (Yal

JHEP 07 (2023) 088

