Multi Higgs Measurements and Projections for the European Strategy Update

Agni Bethani on behalf of <u>CMS</u> and ATLAS

SM@LHC 2025

The Higgs potential

Higgs complex doublet $\varphi = \begin{pmatrix} \varphi^+ \\ \varphi^0 \end{pmatrix}$

- Higgs potential (real part): $V(\varphi) = -\frac{1}{2}\mu^2\varphi^2 + \frac{1}{4}\lambda\varphi^4$
- Expand around the vacuum expectation value: $V(\varphi) \rightarrow V(v+h)$

 $\mu^2 < 0, \lambda > 0$

The Higgs potential

The Higgs potential

- The least explored part of the Standard Model!
- The Higgs sector is sensitive to new physics BSM
- Cosmological consequences:
 - Inflation
 - Vacuum stability
 - Baryogenesis
 -5

Double Higgs production at the LHC (SM)

- At the LHC dominant production mechanism for SM double Higgs production is gluon fusion (ggf)
- Other productions such as VBF and VHH also possible; σ is much smaller
- The "box" and "triangle" diagrams interact destructively
- SM cross-section very small !! (~1000 times smaller than single Higgs production)

HH decays:

bbbb: the highest branching fraction, large multijet background

bbWW(bbVV): Second largest branching fraction Large background. Final states with at least one lepton cleaner.

Multilepton(WW*WW*, WW*ττ, and ττττ): Many different signatures, clean leptonic final states, no b-tagging needed

bbττ: relatively large branching fraction, cleaner final state

Most sensitive

bbyy: very small branching fraction, clean signal extraction due to the narrow $h \rightarrow \gamma\gamma$ mass peak

WWyy: Clean yy peak, leptonic final states or jets

ττγγ: best of ττ and γγ. Small BR

07/04/2025

Higgs pair production cross-section

Multi-Higgs measurements and projections

Higgs pair production cross-section

PhysRevLett.133.101801

Constraints of Higgs couplings from HH

PhysRevLett.133.101801

Higgs trilinear coupling

 $\kappa_{2V} \mbox{=} 0$ exluded for all values of κ_{λ}

HH anomalous couplings

• HEFT parametrisation, parameters considered κ_{λ} , c₂, c_{2g}

PhysRevLett.133.101801

(HL-)LHC timeline

HL-LHC projections CMS

- HL-LHC is planned to start in 2029
- 3000 fb⁻¹ (maybe even 4000 fb⁻¹)
- center-of-mass energy of 14 TeV
- 140 (200) PU baseline (ultimate) scenario.

• S1

- systematics same as Run2
- conservative
- S2
 - Systematic uncertainties halved
 - Datadriven/statistical uncertainties scaled with lumi
 - no MC statistical uncertainties
- S3
 - S2
 - Improvements from upgraded detector and reconstruction performance taken into account

HL-LHC projections CMS

After 1000 fb-1 of data we will be sensitive to μ =1

HIG-20-011

	2000	fb^{-1}	$3000 \ {\rm fb}^{-1}$	
	S2	S3	S2	S3
$b\overline{b}b\overline{b}$ resolved-jets	0.96	1.0	1.2	1.3
$b\overline{b}b\overline{b}$ merged-jets	1.8	1.8	2.2	2.2
$ au au b \overline{b}$	1.9	2.2	2.4	2.7
$\gamma\gamma b\overline{b}$	2.0	2.1	2.4	2.6
Combination	3.5	3.7	4.2	4.5

- We can have discovery at the end of HL-LHC!
- Historically projections are always conservative

HL-LHC projections CMS

ATL-PHYS-PUB-2025-006

ATL-PHYS-PUB-2025-006

Uncertainty	68% κ _λ		
scenario	Combination		
Run 2 syst. unc. Theory unc. halved	[0.39, 1.71] [0.52, 1.59]		
No syst. unc.	[0.38, 1.48]		

ATL-PHYS-PUB-2025-006

Uncertainty scenario	$\frac{68\%}{\text{Combination}}$		
Run 2 syst. unc.	[0.84, 1.20]		
Theory unc. halved	[0.84, 1.20]		
Baseline	[0.85, 1.18]		
No syst. unc.	[0.87, 1.16]		

ATLAS and CMS combined performance

ATLAS and CMS combined performance

	2 ab^{-1} (S2)		3 ab ⁻	¹ (<i>S2</i>)	3 ab^{-1} (S3)		
	ATLAS	CMS	ATLAS	CMS	ATLAS	CMS	
HH statistical significance							
$bar{b} au^+ au^-$	3.0^{\dagger}	1.9	3.5^{\dagger}	2.4	3.8 [†]	2.7	
$bar{b}\gamma\gamma$	2.1^{\dagger}	2.0^{\dagger}	2.4^{\dagger}	2.4^{\dagger}	2.6 [†]	2.6^{\dagger}	
$bar{b}bar{b}$ resolved	0.9	1.0^{\dagger}	1.0	1.2^{\dagger}	1.0	1.3 [†]	
$b\bar{b}b\bar{b}$ boosted	_	1.8^{\dagger}	_	2.2^{\dagger}	_	2.2^{\dagger}	
Multilepton	0.8^{\dagger}	_	1.0^{\dagger}	_	1.0 [†]	_	
$b\bar{b}\ell^+\ell^-$	0.4^{\dagger}	_	0.5^{\dagger}	_	0.5 [†]	_	
Combination	3.7	3.5	4.3	4.2	4.5	4.5	
ATLAS+CMS	6.0		7.2		7.6		

https://arxiv.org/pdf/2504.00672

HL-LHC prospect studies from 2019

- These projections based on first Run2 analyses published in ~ 2018
- $0.52 \le \kappa \lambda \le 1.5$ (with systematics)
- $0.57 \le \kappa \lambda \le 1.5$ (stat only)

	Statistical-only		Statistica	ıl + Systematic
	ATLAS	CMS	ATLAS	CMS
$HH \rightarrow b\bar{b}b\bar{b}$	1.4	1.2	0.61	0.95
$HH \rightarrow b\bar{b}\tau^+\tau^-$	2.5	1.6	2.1	1.4
$HH \rightarrow b\bar{b}\gamma\gamma$	2.1	1.8	2.0	1.8
$HH \rightarrow b\bar{b}VV^*$	-	0.59	-	0.56
$HH \rightarrow b\bar{b}ZZ(4\ell)$	-	0.37	-	0.37
Combination	3.5	2.8	3.0	2.6
	4.5			4.0

Multi-Higgs measurements and projection

2020.100045

ATLAS and CMS combined performance

- Constrain 4 BSM scenarios with modified EWSB potential
- Strong first-order phase transition
- At 3000 fb-1 all models predicting first order phase transition excluded!

https://arxiv.org/pdf/2504.00672

Search for HHH->6b jets

Multi-Higgs measurements and projections

 λ_4

HHHH coupling κ4

http://dx.doi.org/10.1103/PhysRevD.111.032006

HL-LHC we can exclude a significant fraction of the parameter phase space within the perturbative unitarity bounds!

Summary

- HH production
 - Currently upper limits on inclusive cross-section $\sim 2.5 \ {\rm x} \ {\rm SM}$
 - Projections for HL-LHC:
 - 1000 fb-1 ~1 x SM
 - 3000 fb-1 significance ~4.5 σ for CMS and ATLAS respectively 3000 fb-1 CMS+ATLAS combined significance >7 σ
- κ_{λ} coupling
 - Current constraints ~(1.4, 7)
 - 3000 fb-1 ~(0.5, 1.5) for CMS and ATLAS respectively
 - 3000 fb-1~(0.7, 1.3) CMS+ATLAS combined
- At HL-LHC we will be able to exclude BSM scenarios regarding the Higgs field and EWSB

Additional material

Single and double Higgs searches

Simultaneously constrain

- Higgs boson trilinear self-coupling
- Higgs boson couplings to fermions and to vector bosons.

Analysis	Integrated	Maximum	References	Analysis	Int. luminosity (fb^{-1})	Targeted production modes
	luminosity (fb $^{-1}$)	granularity	References	$HH \rightarrow \gamma \gamma b\overline{b}$	138	ggHH and qqHH
$H \rightarrow 4l$	138	STXS 1.2	[34]	$HH \rightarrow \tau \tau b \overline{b}$	138	ggHH and qqHH
${ m H} ightarrow \gamma \gamma$	138	STXS 1.2	[35,none]	$\rm HH \to 4b$	138	ggHH, qqHH and VHH
$\mathrm{H} \to \mathrm{W}\mathrm{W}$	138	STXS 1.2	[37]	$HH \rightarrow leptons$	138	ggHH
$H \rightarrow leptons (t\bar{t}H)$	138	Inclusive	[38]	$HH \rightarrow WWb\overline{b}$	138	ggHH and qqHH
$\mathrm{H} ightarrow \mathrm{b}\overline{\mathrm{b}}~(\mathrm{g}\mathrm{g}\mathrm{H})$	138	Inclusive	[39]			
$\mathrm{H} ightarrow \mathrm{b} \overline{\mathrm{b}} \ (\mathrm{VH})$	77	Inclusive	[40,41]			
$H \rightarrow b\overline{b} \ (t\overline{t}H)$	36	Inclusive	[42]			
$H \rightarrow \tau \tau$	138	STXS 1.2	[43]			
$H ightarrow \mu \mu$	138	Inclusive	[44]		https://arxiv.org/abs	/2407 13554

g -.....

g -.....

 $\sim \kappa_{\lambda}$

 $\sim V$

Single and double Higgs searches

CMS

	Best f	it $\pm 1\sigma$	95% CL interval		
Hypothesis	Expected	Observed	Expected	Observed	
Other couplings fixed to SM	$1.0^{+4.6}_{-1.7}$	$3.1^{+3.0}_{-3.0}$	[-2.0, +7.7]	[-1.2, +7.5]	
Floating ($\kappa_{\rm V}, \kappa_{2\rm V}, \kappa_f$)	$1.0^{+4.7}_{-1.8}$	$4.5^{+1.8}_{-4.7}$	[-2.2, +7.8]	[-1.7, +7.7]	
Floating ($\kappa_{\rm V}, \kappa_{\rm t}, \kappa_{\rm b}, \kappa_{\tau}$)	$1.0^{+4.8}_{-1.8}$	$4.7^{+1.7}_{-4.1}$	[-2.3, +7.7]	[-1.4, +7.8]	
Floating (κ_V , κ_{2V} , κ_t , κ_b , κ_τ , κ_μ)	$1.0\substack{+4.8 \\ -1.8}$	$4.7^{+1.7}_{-4.2}$	[-2.3, +7.8]	[-1.4, +7.8]	

- Single H prefers positive κλ
- Allowing other coupling to float doesn't affect the constraints a lot. We can measure κλ without assumptions!

https://arxiv.org/abs/2407.13554

Single and double Higgs searches

Double Higgs production at the LHC (SM)

Graphic by Katherine Leney

 H_{\Box}

700

 m_{HH} [GeV]

600

 κ_t

 κ_t

800

---- H

---- H