IMPERIAL

Recent Highlights in Differential/ STXS Results for Higgs

George Uttley

On behalf of the ATLAS and CMS collaborations

SM@LHC2025 9th April 2025

Motivation

Gavin Salam – FCC Week 2023 https://indico.cern.ch/event/1202105/contributions/5423455/attachments/2659121/4607170/fcc-london.pdf

Motivation

Model independence

Experimental sensitivity

Motivation

Topic of this talk!

Model independence

Experimental sensitivity

Overview

$ggH + VBF, H \rightarrow WW^* \rightarrow |v|v$

ATLAS ORMOSTAT BIO

ATL-HIGP-2024-07

ATL-HIGP-2024-07

- Update on Phys. Rev. D 108 (2023) 032005.
- Added same-flavor lepton final states.
- Utilizes a Deep Neural Network (DNN) for signal vs background classification in all categories.

- Use more granular bins in m_{jj} at high p_T^H for qqH 2-jet and another bin at higher p_T^H for ggH than in <u>Phys. Rev. D</u> <u>108 (2023) 032005</u>.
- New region qqH 1-jet.
- Significant improvement in the precision of measured STXS bins.

σ/σ_{SM}

- Additional binning of STXS in CP sensitive variable $\Delta \phi_{jj}^{\pm}$, azimuthal angular difference between the rapidity-ordered leading jets.
- Very first STXS_{CP} measurement!
- Results are interpreted in the context of an EFT with CP-violating modifications to HVV/Hgg couplings and good agreement is seen with the SM Higgs boson.

$VH, H \rightarrow WW^* \rightarrow |v|v, |vjj$

ATLAS CRYDSTAT BIOCA

ATL-HIGG-2023-09

10/23

- Update on <u>Phys. Lett. B 798 (2019)</u> <u>134949</u>.
- Now have 2, 3 and 4-lepton channels and utilize MVA signal discriminators.
 - DNNs for 2l & 3l channels,
 - BDTs for 4l.
- Define many categories targeting both STXS and differential bins

WH, $p_{\tau}^{V} \in [0, 75)$ GeV

 $ZH, p_{\tau}^{V} \in [0, 75) \text{ GeV}$

 $ZH, p_{\tau}^{V} \in [250, \infty) \text{ GeV}$

Other ZH

[75, 150) GeV

∈ [150, 250) GeV

ATLAS Simulation

 $VH, H \rightarrow WW^*$

 $\sqrt{s} = 13 \text{ TeV}$

OS 2ℓ , $p_T^{jj} \in [0, 160)$ GeV OS 2ℓ , $p_T^{jj} \in [160, 260)$ GeV OS 2ℓ , $p_T^{ij} \in [260, \infty)$ GeV

SS2e, $\Sigma |p_T| \in [0, 200)$ GeV

SS2e, ∑ |p_T| ∈ [200, 320) GeV

SS2e, ∑ |p_T| ∈ [320, 460) GeV

SS2e, $\sum |p_T| \in [460, \infty)$ GeV

 $SS2\mu$, $\sum |p_T| \in [0, 200)$ GeV

 $SS2\mu$, $\sum |p_T| \in [200, 320)$ GeV

SS2 μ , $\sum |p_{T}| \in [320, 460)$ GeV SS2 μ , $\sum |p_{T}| \in [460, \infty)$ GeV

SSDF, $\sum |p_T| \in [0, 200)$ GeV

SSDF, $\sum |p_{T}| \in [200, 320)$ GeV SSDF, $\sum |p_{T}| \in [320, 460)$ GeV

SSDF, $\sum |p_T| \in [460, \infty)$ Ge

0 0.1

ATL-HIGG-2023-09

0.1 0.2 0.3 0.4 0.5 0.6

0

Expected composition

0.9

0.7 0.8

- Both differential results in p_T^V and in the STXS binning.
- Improved techniques help low p_T^V differential and STXS bins.
- All results consistent with the SM Higgs boson.

$p_{\rm T}^V$ scheme	STXS scheme
$VH, 0 \le p_{\mathrm{T}}^{V} < 75 \mathrm{GeV}$	$\ell \nu H$ and $\ell \ell H$, $0 \le p_{\rm T}^V < 75 {\rm GeV}$
$VH, 75 \le p_{\mathrm{T}}^{V} < 150 \mathrm{GeV}$	$\ell \nu H$ and $\ell \ell H$, $75 \le p_{\rm T}^V < 150 {\rm GeV}$
$VH, 150 \le p_{\mathrm{T}}^{V} < 250 \mathrm{GeV}$	$\ell v H$ and $\ell \ell H$, $p_{\rm T}^V \ge 150 {\rm GeV}$
$VH, p_{\rm T}^V \ge 250 {\rm GeV}$	EW qqH , $60 \le m_{jj} < 120 \text{GeV}$

12/23

H + 2-jets, H \rightarrow WW* \rightarrow evµv CMS-PAS-HIG-24-004

13/23

H + 2-jets, H \rightarrow WW* \rightarrow ev μ v

- Search for anomalous couplings (AC) in the HVV vertex.
- Differential cross section measurement in the CP AC sensitivity variable $\Delta \phi_{ii}$.
- Train an Adversarial Deep Neural Network (ADNN), to maintain model independence and provide excellent allround sensitivity.

H + 2-jets, H \rightarrow WW* \rightarrow ev μ v

• Perform likelihood-based unfolding to extract the differential cross section.

- No significant deviations from the standard model were found.
- Differential cross sections were used to constrain Wilson coefficients.

CMS-PAS-HIG-21-018

- Update on the Nature combination <u>Nature volume 607, 60–68 (2022)</u>, with new channels and many more interpretations.
- Channels include $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^* \rightarrow 4I$, $H \rightarrow WW^* \rightarrow |\nu|\nu$, $H \rightarrow \tau \tau$, $H \rightarrow bb$, $H \rightarrow \mu\mu$, $H \rightarrow Z\gamma$.
- Includes interpretations in:
 - Signal strength modifiers
 - STXS
 - Kappas
 - Higgs self coupling
 - EFT

- First CMS run 2 STXS combination!
- Reasonable agreement with the SM.
- Deviations in the high p_T^V WH/ZH leptonic regions + tH production

18/23

19/23

STXS Stage 1.2 split by decay channel

- Another fit with separate parameter per cross section times branching fraction.
- Most granular fit performed by CMS in the Higgs sector
- 97 parameters of interest!
- Provide tabular version of results and covariance matrix to use for BSM interpretations.

$H \rightarrow ZZ^* \rightarrow 4I$

ATLAS-CONF-2025-002

ATLAS OPPOSTAT BRICAP

- "Golden" decay channels (4μ, 4e, 2μ2e, 2e2μ).
- Uses 56 fb⁻¹ of \sqrt{s} = 13.6 TeV collected collected in 2022 and 2023.
- Measure both inclusive and differential production cross sections within a defined fiducial phase space.

ATLAS-CONF-2025-002

Measure the Higgs cross section differentially across 4 variables of interest.

- p_T^{4l} : Useful for QCD radiation and potential BSM effects at high momenta
- $|y_{4l}|$: Test PDF parameterizations
- m_{34} : Sensitive to spin and CP properties
- *N_{jets}*: Separate Higgs production modes.

Excellent agreement with the SM Higgs boson.

- Many new results from Higgs STXS/differential measurements.
- Wealth of new "model independent" Higgs measurements ready to be utilized.
- Updates on Run 2 measurements utilizing new techniques are bringing improvements on the precisions and on the granularity.
- Reaching the end of Run 2 single Higgs measurements.
 - Includes a CMS Run 2 legacy combination.
- Beginning to see more Run 3 Higgs measurements.
- Run 3 is an exciting time as we can look more differentially/granularly at the Higgs boson's properties and potentially reveal BSM effects.

Backup

