

ROBUST ESTIMATES OF THEORETICAL UNCERTAINTIES AT FIXED ORDER IN PERTURBATION THEORY

MATTHEW A. LIM SM@LHC, 09/04/25 BASED ON [LIM, PONCELET, 2412.14910]

SOURCES OF THEORY UNCERTAINTY

- Parametric uncertainties: SM parameters known to finite precision
- Parton distribution functions: proton structure fit from data
- Non-perturbative/

hadronisation modelling in shower MCs

SOURCES OF THEORY UNCERTAINTY

- Missing Higher Order
 Uncertainty: arises from
 truncation of a perturbative
 series
- Relevant for calculations in resummed and fixed-order
 perturbation theory

Let's take a simple example: EoM for a simple pendulum

 $\ddot{\theta} + \omega^2 \sin \theta = 0$

Let's take a simple example: EoM for a simple pendulum

 $\ddot{\theta} + \omega^2 \sin \theta = 0$

For small displacements, we can expand $\sin \theta \approx \theta + \mathcal{O}(\theta^3)$

 $\ddot{\theta} + \omega^2 \theta = 0$

Let's take a simple example: EoM for a simple pendulum

 $\ddot{\theta} + \omega^2 \sin \theta = 0$

For small displacements, we can expand $\sin\theta \approx \theta + \mathcal{O}(\theta^3)$

$$\ddot{\theta} + \omega^2 \theta = 0$$

Solving, we find for the period of the pendulum

$$T = 2\pi/\omega = 2\pi \sqrt{\frac{\ell}{g}}$$

- Question: what is the uncertainty on g due to the inexactness of our expression for T?
- Clearly, we cannot always rely on being able to calculate arbitrary orders.
- Different kind of uncertainty, not related to inexact knowledge of parameters ℓ .
- No auxiliary measurement can improve this systematic.

ROBUST ESTIMATES OF THEORETICAL UNCERTAINTIES

 α_s FROM THE $p_T(Z)$ SPECTRUM

2309.12986, ATLAS

See Giulia's talk!

- Very relevant question given $\sim 0.7\%$ extraction of α_s
- Achieved by comparing data with resummed calculation

PERTURBATIVE EXPANSIONS IN QFT

- Calculations beyond leading order depend on a renormalisation scale μ.
- Dependence vanishes at all orders, but at finite order we are required to pick a value μ_0 .
- Let's expand at weak coupling $\alpha \equiv \alpha_s(\mu_0)$:

$$f(\alpha) = f_0 + \alpha f_1 + \alpha^2 f_2 + \alpha^3 f_3 + \dots$$

PERTURBATIVE EXPANSIONS IN QFT

• Let's expand at weak coupling $\alpha \equiv \alpha_s(\mu_0)$:

Notation from Tackmann, 2411.18606

 $f(\alpha) = f_0 + \alpha f_1 + \alpha^2 f_2 + \alpha^3 f_3 + \dots$

What we can actually compute are truncated series:

$$f^{\rm LO}(\alpha) = \hat{f}_0 \qquad \qquad f^{\rm NLO}(\alpha) = \hat{f}_0 + \alpha \hat{f}_1$$

where the \hat{f}_i are values we actually computed.

Missing terms are the source of uncertainty (convergence implies leading missing term is dominant)

$$f^{N^{0+1}LO}(\alpha) = \hat{f}_0 + \alpha f_1 \qquad f^{N^{1+1}LO}(\alpha) = \hat{f}_0 + \alpha \hat{f}_1 + \alpha^2 f_2$$

SCALE VARIATION APPROACH

- Changing the renormalisation scale, we define a new coupling $\tilde{\alpha} \equiv \alpha_s(\mu_1)$ related to α via $\alpha = \alpha(\tilde{\alpha}) = \tilde{\alpha} + \tilde{\alpha}^2 b_0 + \mathcal{O}(\tilde{\alpha}^3)$ $b_0 = \frac{\beta_0}{2\pi} \log \frac{\mu_0}{\mu_1}$
- Expanding in the new coupling,
 - $\tilde{f}^{\text{LO}}(\tilde{\alpha}) = \hat{\tilde{f}}_0 \qquad \tilde{f}^{\text{NLO}}(\tilde{\alpha}) = \hat{\tilde{f}}_0 + \tilde{\alpha}\hat{\tilde{f}}_1 = \hat{f}_0 + \alpha\hat{f}_1 + \alpha^2 b_0\hat{f}_1 + \mathcal{O}(\alpha^3)$

We then take as uncertainty estimate

$$\Delta f^{\rm NLO} = f^{\rm NLO}(\alpha) - \tilde{f}^{\rm NLO}(\tilde{\alpha}) = -\alpha^2 b_0 f_1$$

SCALE VARIATION APPROACH

- This is genuinely of higher order.
- Normal (arbitrary) prescription is to pick a central scale related to the process, and vary up and down by a factor 2, envelope variations.
- Prescriptions exist to choose the central scale value, normally aiming to increase convergence rate.

2301.09351, ATLAS

SHORTCOMINGS OF SCALE VARIATION

Our NLO uncertainty estimate was given by

$$\Delta f^{\rm NLO} = -\,\alpha^2 b_0 f_1$$

- Nothing guarantees this is any good!
- The true f_2 is generally more complex than f_1
- b_0 is an arbitrary constant and normally the same for any f
- Correlations between bins of a distribution are not captured correctly, and enveloping means propagation of uncertainties is unclear

SHORTCOMINGS OF SCALE VARIATION

- Complex processes and phase spaces may mean that this fails completely.
- Ultimately µ is not a physical parameter - it has no true value and does not become better known at higher orders!
- Uncertainty reduces only because µ-dependence decreases.

1911.00479, Chawdhry, Czakon, Mitov, Poncelet

THEORY NUISANCE PARAMETERS

Notation from Tackmann, 2411.18606

Parameterise unknown higher terms

$$f^{N^{0+1}LO}(\alpha) = \hat{f}_0 + \alpha f_1(\theta)$$
 $f^{N^{1+1}LO}(\alpha) = \hat{f}_0 + \alpha \hat{f}_1 + \alpha^2 f_2(\theta)$

- The θ_i are now Theory Nuisance Parameters.
- They have a true value, viz.

$$f_i(\hat{\theta}) = \hat{f}_i$$

Distributions for the θ_i can be inferred e.g. from existing higher order computations

THEORY NUISANCE PARAMETERS

In the simplest case $f(\alpha)$ is only a function of α - then the parameterised higher order terms are simply numbers,

$$f_n(\theta) = \theta$$

- In general, extra functional dependence may be present.
- Particularly nice for transverse momentum resummation: many ingredients can be directly parameterised in this way

$$F(\alpha_s) = F_0 + \alpha_s F_1 + \dots + \alpha_s^n F_n(\theta)$$

$$\Gamma(\alpha_s) = \alpha_s [\Gamma_0 + \alpha_s \Gamma_1 + \dots + \alpha_s^n \Gamma_n(\theta)]$$

$$\gamma(\alpha_s) = \alpha_s [\gamma_0 + \alpha_s \gamma_1 + \dots + \alpha_s^n \gamma_n(\theta)]$$

ADVANTAGES OF THE TNP APPROACH

- TNPs have a true value they can even be constrained from data
- Typical size can be estimated from existing calculations
- Can be included in fits and treated as other systematics
- Capture correlations correctly
- Can be used to include partial higher order information without needing full computation

TNPS FOR FIXED ORDER COMPUTATIONS

- In the resummed case, a lot about the higher order structure of the computation is known a priori
- Anomalous dimensions are often simply numbers and can easily be parameterised
- For simple processes (e.g. Drell-Yan), hard and soft functions are also numbers
- Beam functions more tricky, as they depend on partonic *x*
- None of this applies for fixed order computations!

TNPS FOR DIFFERENTIAL FIXED ORDER COMPUTATIONS

2412.14910, MAL, Poncelet

$$\mathrm{d}\sigma = \alpha_s^n N_c^m \mathrm{d}\bar{\sigma}^{(0)} \left[1 + \alpha_s N_c \left(\frac{\mathrm{d}\bar{\sigma}^{(1)}}{\mathrm{d}\bar{\sigma}^{(0)}} \right) + \alpha_s^2 N_c^2 \left(\frac{\mathrm{d}\bar{\sigma}^{(2)}}{\mathrm{d}\bar{\sigma}^{(0)}} \right) + \dots \right]$$

- Experience suggests that $d\bar{\sigma}^{(i)}/d\bar{\sigma}^{(0)} \sim \mathcal{O}(1)$
- Try a parameterisation using lower order information:

$$\frac{\mathrm{d}\bar{\sigma}_{\mathrm{TNP}}^{(N+1)}}{\mathrm{d}\bar{\sigma}^{(0)}} = \sum_{j=1}^{N} f_k^{(j)} \left(\overrightarrow{\theta}, x\right) \left(\frac{\mathrm{d}\bar{\sigma}^{(j)}}{\mathrm{d}\bar{\sigma}^{(0)}}\right)$$

x is a mapped kinematic variable

TNPS FOR DIFFERENTIAL FIXED ORDER COMPUTATIONS

Try a parameterisation using lower order information:

$$\frac{\mathrm{d}\bar{\sigma}_{\mathrm{TNP}}^{(N+1)}}{\mathrm{d}\bar{\sigma}^{(0)}} = \sum_{j=1}^{N} f_{k}^{(j)} \left(\overrightarrow{\theta}, x\right) \left(\frac{\mathrm{d}\bar{\sigma}^{(j)}}{\mathrm{d}\bar{\sigma}^{(0)}}\right)$$

- x is a mapped kinematic variable
- Different choices for polynomial *f* possible:

$$f_k^B\left(\overrightarrow{\theta}, x\right) = \sum_{i=0}^k \theta_i \binom{k}{i} x^{k-i} (1-x)^i, x \in [0,1] \qquad f_k^C\left(\overrightarrow{\theta}, x\right) = \frac{1}{2} \sum_{i=0}^k \theta_i T_i(x), x \in [-1,1]$$

TNP UNCERTAINTIES – $t\bar{t}$ + **DECAYS**

ROBUST ESTIMATES OF THEORETICAL UNCERTAINTIES

TNP UNCERTAINTIES – WW + DECAYS

EXAMPLE OF TNP FIT: ZZ

PROCESS META-STUDY

Process	\sqrt{s}/TeV	Scale	PDF	Distributions
$pp \to H$ (full theory)	13	$m_H/2$	NNPDF3.1	y_H
$pp \to ZZ^* \to e^+e^-\mu^+\mu^-$	13	M_T	NNPDF3.1	$M_{e^+\mu^+}, p_T^{e^+e^-}, y_{e^+}$
$pp \to WW^* \to e\nu_e \mu \nu_\mu$	13	m_W	NNPDF3.1	$M_{WW},~p_T^{\mu^-},~y_{W^-}$
$pp \to (W \to \ell \nu) + c$	13	$E_T + p_T^c$	NNPDF3.1	$p_T^\ell , y_\ell ,$
$pp \to t\bar{t}$	13	$H_T/4$	NNPDF3.1	$M_{tar{t}},p_T^t,y_t$
$pp \to t\bar{t} \to b\bar{b}\ell\bar{\ell}$	13	$H_T/4$	NNPDF3.1	$M_{\ell \bar{\ell}}, p_T^{b_1}, p_{T,\ell_1}/p_{T,\ell_2}$
$pp \to \gamma \gamma$	8	$M_{\gamma\gamma}$	NNPDF3.1	$M_{\gamma\gamma},p_T^{\gamma_1},y_{\gamma\gamma}$
$pp \rightarrow \gamma \gamma j$	13	$H_T/2$	NNPDF3.1	$M_{\gamma\gamma}, p_T^{\gamma\gamma}, \cos\phi_{\rm CS}, y_{\gamma_1} , \Delta\phi_{\gamma\gamma}$
pp ightarrow jjj	13	\hat{H}_T	MMHT2014	TEEC with $H_{T,2} \in [1000, 1500), [1500, 2000), [3500, \infty)$ GeV
$pp ightarrow \gamma jj$	13	H_T	NNPDF3.1	$M_{\gamma j j},p_T^j, y_{\gamma-{ m jet}} ,E_{T,\gamma}$

FITS: BERNSTEIN PARAMETERISATION

TNPs in Bernstein parameterisation

FITS: CHEBYSHEV PARAMETERISATION

CAVEATS AND OPEN QUESTIONS

- How does uncertainty estimate depend on central scale choice?
- How sensitive is this to the exact parameterisation?
- How do you deal with multi-differential distributions?
- What about EW corrections?
- How do you correctly correlate processes?

SUMMARY AND OUTLOOK

- Accurate theory uncertainties a must for the LHC
- Scale variation has well-known shortcomings, in particular inability to correctly describe correlations
- TNPs provide an appealing alternative
- For single differential fixed order, can reproduce scale variation where it works well and provide significant improvements where it fails

BACKUP SLIDES

SCALE VARIATION APPROACH

Resummed calculations depend on many scales due to factorisation of cross section:

 $\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}p_T} \approx H(m_H, \mu_H) B_i(p_T, \mu_B) \otimes B_j(p_T, \mu_B) \otimes S(p_T, \mu_S)$

 Most reliable uncertainty estimation prescription involves simultaneous variation of all scales and enveloping.

PARTIAL HIGHER ORDERS: JET VETO RESUMMATION

- Jet veto resummation for H + j known to NLL' many NNLL ingredients known, but a few two-loop ingredients missing
- Approximate NNLL' order can be achieved by treating unknown terms as nuisance parameters
- Correlation between distributions captured correctly

