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ROBUST ESTIMATES OF THEORETICAL UNCERTAINTIES

SOURCES OF THEORY UNCERTAINTY

▸ Parametric uncertainties: SM 
parameters known to finite 
precision 

▸ Parton distribution functions: 
proton structure fit from data 

▸ Non-perturbative/
hadronisation modelling in 
shower MCs
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SOURCES OF THEORY UNCERTAINTY

▸ Missing Higher Order 
Uncertainty: arises from 
truncation of a perturbative 
series 

▸ Relevant for calculations in 
resummed and fixed-order 
perturbation theory
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MISSING HIGHER ORDER UNCERTAINTIES

▸ Let’s take a simple example: EoM for a simple pendulum

··θ + ω2 sin θ = 0



ROBUST ESTIMATES OF THEORETICAL UNCERTAINTIES

MISSING HIGHER ORDER UNCERTAINTIES

▸ Let’s take a simple example: EoM for a simple pendulum

··θ + ω2 sin θ = 0
▸ For small displacements, we can expand ￼sin θ ≈ θ + 𝒪(θ3)

··θ + ω2θ = 0



ROBUST ESTIMATES OF THEORETICAL UNCERTAINTIES

MISSING HIGHER ORDER UNCERTAINTIES

▸ Let’s take a simple example: EoM for a simple pendulum

··θ + ω2 sin θ = 0
▸ For small displacements, we can expand ￼sin θ ≈ θ + 𝒪(θ3)

··θ + ω2θ = 0
▸ Solving, we find for the period of the pendulum

T = 2π/ω = 2π
ℓ
g
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MISSING HIGHER ORDER UNCERTAINTIES

▸ Question: what is the uncertainty on ￼  due to the 
inexactness of our expression for ￼ ? 

▸ Clearly, we cannot always rely on being able to calculate 
arbitrary orders. 

▸ Different kind of uncertainty, not related to inexact 
knowledge of parameters ￼ . 

▸ No auxiliary measurement can improve this systematic.

g
T

ℓ
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￼  FROM THE ￼  SPECTRUMαs pT(Z)

▸ Very relevant question given ￼ extraction of ￼  

▸ Achieved by comparing data with resummed calculation

∼ 0.7 % αs

See Giulia’s talk!

2309.12986, ATLAS
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PERTURBATIVE EXPANSIONS IN QFT

▸ Calculations beyond leading order depend on a 
renormalisation scale ￼ .  

▸ Dependence vanishes at all orders, but at finite order we 
are required to pick a value ￼ . 

▸ Let’s expand at weak coupling ￼ :

μ

μ0

α ≡ αs(μ0)

f(α) = f0 + α f1 + α2 f2 + α3 f3 + …
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PERTURBATIVE EXPANSIONS IN QFT
▸ Let’s expand at weak coupling ￼ :α ≡ αs(μ0)

f(α) = f0 + α f1 + α2 f2 + α3 f3 + …

▸ What we can actually compute are truncated series:

fLO(α) = ̂f0 fNLO(α) = ̂f0 + α ̂f1

where the ￼  are values we actually computed.̂fi

▸ Missing terms are the source of uncertainty (convergence 
implies leading missing term is dominant)

fN0+1LO(α) = ̂f0 + α f1 fN1+1LO(α) = ̂f0 + α ̂f1 + α2 f2

Notation from 
Tackmann, 
2411.18606
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SCALE VARIATION APPROACH
▸ Changing the renormalisation scale, we define a new 

coupling ￼  related to ￼  viaα̃ ≡ αs(μ1) α

α = α(α̃) = α̃ + α̃2b0 + 𝒪(α̃3) b0 =
β0

2π
log

μ0

μ1

▸ Expanding in the new coupling,

f̃ LO(α̃) = ̂̃f0 f̃ NLO(α̃) = ̂̃f0 + α̃ ̂̃f1 = ̂f0 + α ̂f1 + α2b0
̂f1 + 𝒪(α3)

▸ We then take as uncertainty estimate

ΔfNLO = fNLO(α) − f̃ NLO(α̃) = − α2b0 f1
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SCALE VARIATION APPROACH
▸ This is genuinely of higher order.  

▸ Normal (arbitrary) prescription is 
to pick a central scale related to 
the process, and vary up and 
down by a factor 2, envelope 
variations. 

▸ Prescriptions exist to choose the 
central scale value, normally 
aiming to increase convergence 
rate.

2301.09351, ATLAS
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SHORTCOMINGS OF SCALE VARIATION

▸ Our NLO uncertainty estimate was given by

ΔfNLO = − α2b0 f1
▸ Nothing guarantees this is any good! 

▸ The true ￼  is generally more complex than ￼  

▸ ￼  is an arbitrary constant and normally the same for any ￼ 

▸ Correlations between bins of a distribution are not 
captured correctly, and enveloping means propagation of 
uncertainties is unclear

f2 f1

b0 f
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SHORTCOMINGS OF SCALE VARIATION

▸ Complex processes and phase 
spaces may mean that this fails 
completely. 

▸ Ultimately ￼  is not a physical 
parameter - it has no true value 
and does not become better 
known at higher orders! 

▸ Uncertainty reduces only 
because ￼ -dependence 
decreases. 

μ

μ
1911.00479, Chawdhry, Czakon, Mitov, Poncelet
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THEORY NUISANCE PARAMETERS
▸ Parameterise unknown higher terms

fN0+1LO(α) = ̂f0 + α f1(θ) fN1+1LO(α) = ̂f0 + α ̂f1 + α2 f2(θ)

Notation from 
Tackmann, 
2411.18606

▸ The ￼  are now Theory Nuisance Parameters. 

▸ They have a true value, viz.

θi

fi( ̂θ) = ̂fi

▸ Distributions for the ￼  can be inferred e.g. from existing 
higher order computations

θi
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THEORY NUISANCE PARAMETERS
▸ In the simplest case  ￼  is only a function of ￼  - then the 

parameterised higher order terms are simply numbers, 
f(α) α

fn(θ) = θ

▸ In general, extra functional dependence may be present. 

▸ Particularly nice for transverse momentum resummation: 
many ingredients can be directly parameterised in this way

F(αs) = F0 + αsF1 + … + αn
s Fn(θ)

Γ(αs) = αs[Γ0 + αsΓ1 + … + αn
s Γn(θ)]

γ(αs) = αs[γ0 + αsγ1 + … + αn
s γn(θ)]

See 
Giulia’s 
talk!
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ADVANTAGES OF THE TNP APPROACH

▸ TNPs have a true value - they can even be constrained 
from data 

▸ Typical size can be estimated from existing calculations 

▸ Can be included in fits and treated as other systematics 

▸ Capture correlations correctly 

▸ Can be used to include partial higher order information 
without needing full computation
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TNPS FOR FIXED ORDER COMPUTATIONS

▸ In the resummed case, a lot about the higher order 
structure of the computation is known a priori 

▸ Anomalous dimensions are often simply numbers and can 
easily be parameterised  

▸ For simple processes (e.g. Drell-Yan), hard and soft 
functions are also numbers 

▸ Beam functions more tricky, as they depend on partonic ￼  

▸ None of this applies for fixed order computations!

x
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TNPS FOR DIFFERENTIAL FIXED ORDER COMPUTATIONS

dσ = αn
s Nm

c dσ̄(0) [1 + αsNc ( dσ̄(1)

dσ̄(0) ) + α2
s N2

c ( dσ̄(2)

dσ̄(0) ) + …]
▸ Experience suggests that ￼  

▸ Try a parameterisation using lower order information:

dσ̄(i)/dσ̄(0) ∼ 𝒪(1)

dσ̄(N+1)
TNP

dσ̄(0)
=

N

∑
j=1

f ( j)
k ( ⃗θ , x) ( dσ̄( j)

dσ̄(0) )
▸ ￼  is a mapped kinematic variablex

2412.14910, MAL, Poncelet
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TNPS FOR DIFFERENTIAL FIXED ORDER COMPUTATIONS

▸ Try a parameterisation using lower order information:

dσ̄(N+1)
TNP

dσ̄(0)
=

N

∑
j=1

f ( j)
k ( ⃗θ , x) ( dσ̄( j)

dσ̄(0) )
▸ ￼  is a mapped kinematic variable 

▸ Different choices for polynomial ￼ possible:

x

f

fB
k ( ⃗θ , x) =

k

∑
i=0

θi(k
i )xk−i(1 − x)i, x ∈ [0,1] f C

k ( ⃗θ , x) =
1
2

k

∑
i=0

θiTi(x), x ∈ [−1,1]
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TNP UNCERTAINTIES - ￼  + DECAYStt̄

Band : sample  
￼  
Quad: add 
individual 
￼  in 
quadrature 

θ ∈ [−1,1]

θ = ± 1

2412.14910, MAL, Poncelet
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TNP UNCERTAINTIES - ￼  + DECAYSWW

2412.14910, MAL, Poncelet
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EXAMPLE OF TNP FIT: ￼ZZ

2412.14910, MAL, Poncelet
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PROCESS META-STUDY

2412.14910, MAL, Poncelet
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FITS: BERNSTEIN PARAMETERISATION

2412.14910, MAL, Poncelet
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FITS: CHEBYSHEV PARAMETERISATION

2412.14910, MAL, Poncelet
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CAVEATS AND OPEN QUESTIONS

▸ How does uncertainty estimate depend on central scale 
choice? 

▸ How sensitive is this to the exact parameterisation? 

▸ How do you deal with multi-differential distributions? 

▸ What about EW corrections? 

▸ How do you correctly correlate processes?
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SUMMARY AND OUTLOOK

▸ Accurate theory uncertainties a must for the LHC 

▸ Scale variation has well-known shortcomings, in particular 
inability to correctly describe correlations 

▸ TNPs provide an appealing alternative 

▸ For single differential fixed order, can reproduce scale 
variation where it works well and provide significant 
improvements where it fails



BACKUP SLIDES
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SCALE VARIATION APPROACH
▸ Resummed calculations depend on many scales due to 

factorisation of cross section:
d ̂σ
dpT

≈ H(mH, μH) Bi(pT, μB) ⊗ Bj(pT, μB) ⊗ S(pT, μS)

▸ Most reliable uncertainty 
estimation prescription 
involves simultaneous 
variation of all scales and 
enveloping.

2306.16458, Cal, von Kuk, MAL, Tackmann
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PARTIAL HIGHER ORDERS: JET VETO RESUMMATION

▸ Jet veto resummation for ￼  known to NLL’ - many NNLL 
ingredients known, but a few two-loop ingredients missing 

▸ Approximate NNLL’ order can be achieved by treating 
unknown terms as nuisance parameters 

▸ Correlation between distributions captured correctly

H + j

2408.13301, Cal, M
A
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