aN3LO PDFs, theory uncertainties, and the impact on phenomenology

Roy Stegeman The University of Edinburgh

Durham, 8 April 2025

Motivation

- Predictions at particle colliders such as the LHC use two main ingredients: - Matrix elements (MEs)
 - Parton distribution functions (PDFs)
- Much progress has been made in the computation of MEs at N^3LO
- **PDF uncertainties are a bottleneck** for many LHC precision calculations
- Most widely used PDF sets are at NNLO and without theory uncertainties

Dulat, Lazopoulos, Mistlberger, 1802.00827

Sources of uncertainty for Higgs in gluon fusion

Much progress since this plot, in particular:

- NNLO top quark corrections <u>Czakon et al., 2105.04436</u>
- Mixed QDC-EW corrections Becchetti et al., 2010.09451, Bonetti, et al., 2007.09813

Motivation

 $\alpha_s(m_Z)$ determination from Z_{p_T} at 8 TeV

ATLAS, 2309.12986

PDF set	$\alpha_{\rm s}(m_Z)$	PDF uncertainty	$g [\text{GeV}^2]$	$q [\text{GeV}^4]$
MSHT20 [37]	0.11839	0.00040	0.44	-0.07
NNPDF4.0 [<mark>84</mark>]	0.11779	0.00024	0.50	-0.08
CT18A [29]	0.11982	0.00050	0.36	-0.03
HERAPDF2.0 [65]	0.11890	0.00027	0.40	-0.04

$$\Delta_{PDF}$$
(MSHT20 only) = 4 × 10⁻⁴
 $\Delta_{PDF}(\frac{1}{2}$ (CT18A-NNPDF4.0)) = 10 × 10⁻⁴

Final total uncertainty:

$$\Delta_{TOT} = 9 \times 10^{-4}$$

- \bullet dataset?

Weak mixing angle at 13 TeV

<u>CMS, 2408.07622</u>

What is the **PDF uncertainty** that should be associated with this measurement?

How to choose the **baseline PDF**?

Is profiling of PDFs justified? What is the impact on other experiments in the **global**

Motivation

- W mass determination has received a lot of attention in recent years
- CMS measurement similar precision to the CDF result
- PDFs remain a major part of the theory uncertainty

CMS CMS, 2412.13872 m_w in MeV Electroweak fit 80353 ± 6 PRD 110 (2024) 030001 LEP combination 80376 ± 33 Phys. Rep. 532 (2013) 119 **D**0 80375 ± 23 PRL 108 (2012) 151804 CDF 80433.5 ± 9.4 |---|Science 376 (2022) 6589 LHCb 80354 ± 32 JHEP 01 (2022) 036 ATLAS 80366.5 ± 15.9 arXiv:2403.15085 CMS 80360.2 ± 9.9 This work 80300 80350 80400 80450 $m_{\rm W}$ (MeV)

PDFs used in the analysis are **rescaled** to improve agreement among them. What is the **impact on the global dataset**?

► aN3LO PDFs

What do we need for PDFs at N³LO?

A PDF fit requires several theory inputs:

- **DGLAP** splitting functions small-x and large-x limits Mellin moments
- Matching conditions for variable flavor number schemes Now exactly known but original aN3LO publications use approximations
- **DIS coefficient functions** Massless known, massive limits known
- Hadronic cross-section Not much is known

Strategy:

- When N³LO theory is known, it is **used**
- When partial information is available, use it while accounting for parametrisation uncertainty
- When it is unknown account for **missing higher order uncertainty**

N ³ LO QCD corrections in PDF	determination									
Splitting Functions (information is partial)										
Singlet $(P_{aa}, P_{aa}, P_{aa}, P_{aa})$										
$- \text{large-}n_f \text{ limit [NPB 915 (2017) 335; arXiv:2308.07958]}$										
– small-x limit [JHEP 06 (2018) 145]										
- large- x limit [NPB 832 (2010) 152; JHEP 04 (2020) 018; JHEP 09 (2022) 155]										
– 5 (10) lowest Mellin moments [PLB 825 (2022) 136853; ibid. 842 (2023)	137944; ibid. 846 (2023) 138215									
Non-singlet ($P_{NS,v}$, $P_{NS,+}$, $P_{NS,-}$)										
- large- n_f limit [NPB 915 (2017) 335; arXiv:2308.07958]										
– small- x limit [JHEP 08 (2022) 135]										
– large-x limit [JHEP 10 (2017) 041]										
– 8 lowest Mellin moments [JHEP 06 (2018) 073]										
DIS structure functions (F_L , F_2 , F_3)										
- DIS NC (massless) [NPB 492 (1997) 338; PLB 606 (2005) 123; NPB 724 (20	05) 3]									
- DIS CC (massless) [Nucl.Phys.B 813 (2009) 220]										
 massive from parametrisation combining known limits and data 	mping functions [NPB 864 (2012) 399]									
PDF matching conditions										
- all known except for $a_{H,a}^3$ [NPB 820 (2009) 417; NPB 886 (2014) 733; JH	HEP 12 (2022) 134]									
Coefficient functions for other processes										
– DY (inclusive) [JHEP 11 (2020) 143]; DY (y differential) [PRL 128 (20	22) 052001]									
Emanuele R. Nocera (UNITO) Progress from NNPDF	5 August 2024 12 / 25									
E. Nocera, Workshop on Hadron Physics and Oppo	ortunities Worldwide									

Dalian, China, August 2024 (More is known today!)

Approximate N³LO splitting functions

Dark blue: uncertainties due to parametrization of aN3LO contributions

Light blue: scale variations

- Good perturbative stability within uncertainties
- Small parametrisation uncertainty in large range of *x*

Approximate does not mean poorly known!

Approximate N³LO splitting functions

Generally good agreement. MSHT was first so fewer moments known Later results are within MSHT uncertainty, except P_{gq} For more info see the **Les Houches benchmark paper** Results by Moch et al. will be the new default! Cooper-Sarkar et al., <u>2406.16188</u>

How much do Mellin moments calculated since **NNPDF/MSHT** releases affect aN³LO PDFs?

R. Thorne PDF4LHC December 2024

- Small changes in the gluon PDF

• Improved agreement between NNPDF and MSHT

Fit quality

- Without MHOUs the fit improves (lower χ^2) with increasing perturbative order for both NNPDF and MSHT
- With MHOUs the fit depends only weakly on the perturbative order
- At N³LO MHOUs have a small impact on the χ^2

<u>MSHT, 2207.04739</u>

MSHT $\sqrt{2}/N$ (4363)	LO	NLO	NNLO	aN3L		
Worr & / Npts (4000)	2.57	1.33	1.17	1.14		

Phenomenology

NNPDF, 2402.18635

N³LO PDFs result in a small suppression of the Higgs gluon fusion cross section compared to NNLO PDFs

Generally perturbative convergence for Higgs in VBF and Drell-Yan

N³LO/NNLO ratio is similar for NNPDF and MSHT

QED corrections and photon PDF

PDFs at $aN^3LO_{QCD} \otimes NLO_{QED}$ with photon PDF is available from both NNPDF and MSHT representing the **most accurate PDFs**

MSHT+NNPE combination

MSHT&NNPDF, 2411.05373

MSHT+NNPDF aN3LO(+QED)

MSHT+NNPDF aN3LO combination

- Same approach as PDF4LHC: 100 replicas from NNPDF and 100 replicas from MSHT
- Both for aN3LO QCD and aN3LO + QED, together with NNLO baseline
- Usual differences in theory, methodology, and experiment remain ⇒ conservative
- Can be extended if other PDFs at the same accuracy become available

PDF set	pert. order (PDF)
PDF4LHC21_mc	$NNLO_{QCD}$
MSHT20xNNPDF40_nnlo	$NNLO_{QCD}$
MSHT20xNNPDF40_nnlo_qed	$\mathrm{NNLO}_{\mathrm{QCD}}\otimes\mathrm{NLO}_{\mathrm{QED}}$
MSHT20xNNPDF40_an3lo	$\mathrm{aN^{3}LO_{QCD}}$
MSHT20xNNPDF40_an3lo_qed	$aN^{3}LO_{\rm QCD}\otimes \rm NLO_{\rm QED}$
NNPDF40_an3lo_as_01180_mhou	$\mathrm{aN^{3}LO_{QCD}}$
NNPDF40_an3lo_as_01180_qed_mhou	$aN^{3}LO_{QCD}\otimes NLO_{QED}$
MSHT20an3lo_as118	$\mathrm{aN^{3}LO_{QCD}}$
MSHT20qed_an3lo	$aN^{3}LO_{\rm QCD}\otimes NLO_{\rm QED}$

Higgs production

Inner error bars: PDF unc. Outer error bars: PDF unc. + MHOU

For the combination:

- aN3LO correction -3%
- aN3LO+QED correction -5%

1.050Ratio to MSHT20xNNPDF40_nnlo 1.0251.0000.9750.9500.9250.900

Higgs in Gluon Fusion (PDF + MHOUs)

Higgs production

Without N3LO PDFs, uncertainty is **approximated**

$$\Delta_{\text{NNLO}}^{\text{app}} \equiv \frac{1}{2} \left| \frac{\sigma_{\text{NNLO-PDF}}^{\text{NNLO}} - \sigma_{\text{NLO-PDF}}^{\text{NNLO}}}{\sigma_{\text{NNLO-PDF}}^{\text{NNLO}}} \right|$$

How does this compare to the **exact N3LO shift**?

$$\Delta_{\text{NNLO}}^{\text{exact}} \equiv \left| \frac{\sigma_{\text{N}^{3}\text{LO}-\text{PDF}}^{\text{N}^{3}\text{LO}} - \sigma_{\text{NNLO}-\text{PDF}}^{\text{N}^{3}\text{LO}}}{\sigma_{\text{N}^{3}\text{LO}-\text{PDF}}^{\text{N}^{3}\text{LO}}} \right|$$

Previous estimates of the N3LO mismatch were underestimated

	ggF	VBF
	3.3%	2.3%
▲approx	0.9%	0.5%

 $\alpha_s(m_Z)$ at aN3LO in MSHT

<u>MSHT, 2404.02964</u>

- Consistent with NNLO result

• First PDF $\alpha_s(m_Z)$ determination at aN³LO!

$\alpha_s(m_Z)$ in NNPDF - closure test Work in progress

- Discovered ``plausible" methodologies that fail the closure test

• Generate data from theory predictions at $\alpha_s(m_Z)_{\text{pseudodata}} = 0.118$

• Verify that is is correctly reproduced in two independent fitting methodologies

$\alpha_s(m_Z)$ determinations

		aN3LO+Q
•	Perturbative stability between NNLO and aN ³ LO (NNI and MSHT)	PDF
•	At aN ³ LO only small upward shift due to QED correct and photon PDF	ions aN3
•	$\alpha_s(M_Z)^{aN3LO,QED,MHOU} = 0.1194(7)$	Μ
•	Different groups use different data, theory, experiment (as in standard PDF fits), leading to differences in	t MS
	extracted $\alpha_s(m_Z)$	<u>ABMPtt, 2407.00545</u> A

CT18, 1912.10053 CT18 NNLO -

Summary

- aN³LO PDFs enable consistent N3LO calculations
- aN³LO evolution is close to exact
- N³LO cross sections are a long term goal
- Both N³LO QCD and NLO QED correction are relevant for Higgs in gluon fusion
- aN³LO+QED represents the most accurate PDFs currently available (NNPDF and MSHT)
- How should we deal with **differences between PDFs**?
- Missing higher order uncertainties are computed via scale variations or NNLO-NLO shifts. Is there a better way?

Summary

- aN³LO PDFs enable consistent N3LO calculations
- aN³LO evolution is close to exact
- N³LO cross sections are a long term goal
- Both N³LO QCD and NLO QED correction are relevant for Higgs in gluon fusion
- aN³LO+QED represents the most accurate PDFs currently available (NNPDF and MSHT)
- How should we deal with **differences between PDFs**?
- Missing higher order uncertainties are computed via scale variations or NNLO-NLO shifts. Is there a better way?

Thank you for your attention!

Backup slides

Higgs production in VBF

QED corrections and photon **PDF**

- initiated contributions may be relevant
- Modify the DGLAP running to account for QED corrections:

$$P = P_{QCD} + P_{QCD \otimes QED}$$
$$P_{QCD \otimes QED} = \alpha_{em} P^{(0,1)} + \alpha_{em} \alpha_s P^{(1,1)} + \alpha_{em}^2 P^{(0,2)}$$

[arXiv:1607.04266], [arXiv:1708.01256]

$$x\gamma\left(x,\mu^{2}\right) = \frac{2}{\alpha\left(\mu^{2}\right)} \int_{x}^{1} \frac{dz}{z} \left\{ \int_{\frac{m_{p}^{2}x^{2}}{1-z}}^{\frac{\mu^{2}}{1-z}} \frac{dQ^{2}}{Q^{2}} \alpha^{2}(Q^{2}) \left[-z^{2}F_{L}\left(x/z,Q^{2}\right) + \left(zP_{\gamma q}(z) + \frac{2x^{2}m_{p}^{2}}{Q^{2}}\right)F_{2}\left(x/z,Q^{2}\right) \right] - \alpha^{2}\left(\mu^{2}\right)z^{2}F_{2}\left(x/z,\mu^{2}\right) \right\}$$

• The **momentum sum rule** needs to account for the photon PDF:

$$\sum_{i=q,\bar{q},g,\boldsymbol{\gamma}} \int_0^1 dx x f_i\left(x,Q^2\right) = 1.$$

• So far we considered only QCD evolution, but $\mathcal{O}(\alpha_s^2) \approx \mathcal{O}(\alpha_{em})$ so also photon

• Data does not provide strong constraints on the photon, but the photon PDF can be computed from DIS structure functions: Manohar, Nason, Salam, Zanderighi,

Theory uncertainties in PDFs

Missing higher order uncertainties (MHOUs) are estimated through 7 point scale variations

• In a fit we minimize the χ^2 :

$$P(T \mid D\lambda) \propto \exp\left(-\frac{1}{2}(T-D)^T C^{-1}(T-D)\right) \equiv$$

$$C_{\mathsf{MHOU},ij} = n_m \frac{1}{V_m} \sum \left(T_i(\kappa_f, \kappa_r) - T_i(0,0) \right) \left(T_j(\kappa_f, \kappa_r) - T_j(0,0) \right)$$

 $\exp\left(\chi^2\right)$

• To account for MHOUs we treat the theory covmat on the same footing as the experimental covmat: $C = C_{exp} + C_{MHOU}$

Validating the MHOU covmat

The MHOU covmat is validated by comparing the shifts from scale variations at NLO to the known NNLO-NLO shifts

Data

Data set	Ref.	NNPDF3.1	NNPDF4.0	ABMP16	CT18	MSHT20	Data set	Ref.	NNPDF3.1	NNPDF4.0	ABMP16	CT18	MSHT20
$\Delta TL \Delta S W Z 7 TeV (C - 35 pb^{-1})$	[53]	1	1	1	1	1	CMS W asym. 7 TeV ($\mathcal{L} = 36 \text{ pb}^{-1}$)	[282]	×	×	×	×	1
ATLAS W Z 7 TeV ($\mathcal{L} = 35 \text{ pb}^{-1}$)	[54]	•		×	(0)		CMS Z 7 TeV ($\mathcal{L} = 36 \text{ pb}^{-1}$)	[283]	×	×	×	×	1
ATLAS $w, 27$ rev $(2 = 4.0$ rb $)$	[55]	•		<u>,</u>		×	CMS W electron asymmetry 7 TeV	[57]	1	1	×	1	1
ATLAS low-mass DY 7 TeV	[50]			<u> </u>			CMS W muon asymmetry 7 TeV	[58]	1	1	1	1	×
ATLAS high-mass D1 7 Tev	[00]	· ·		Û	(*)	· ·	CMS Drell-Yan 2D 7 TeV	[59]	1	1	×	(🗸)	1
ATLAS W 8 IEV	[00]	Ĵ	(*)	Û	<u></u>	· ·	CMS Drell-Yan 2D 8 TeV	[284]	(✔)	×	×	×	×
ATLAS DY 2D 8 TeV	[80]	<u>^</u>		^		~	CMS W rapidity 8 TeV	[<mark>60</mark>]	1	1	1	1	1
ATLAS high-mass DY 2D 8 TeV	[79]	×		×	(~)	· ·	CMS $W, Z p_T$ 8 TeV ($\mathcal{L} = 18.4 \text{ fb}^{-1}$)	[285]	×	×	×	(✔)	×
ATLAS $\sigma_{W,Z}$ 13 TeV	[83]	×		-	×	×	CMS $Z p_T$ 8 TeV	[66]	1	1	×	(🗸)	×
ATLAS W +jet 8 TeV	[95]	×	1	×	×	~	CMS $W + c$ 7 TeV	[78]	1	1	×	(🗸)	1
ATLAS $Z p_T$ 7 TeV	[274]	(✔)	×	×	(✔)	×	CMS $W + c$ 13 TeV	[86]	×	1	×	×	(🗸)
ATLAS $Z p_T 8$ TeV	[65]	 Image: A set of the set of the	1	×	1	 Image: A start of the start of	CMS single-inclusive jets 2.76 TeV	[77]	1	×	×	×	1
ATLAS $W + c$ 7 TeV	[85]	×	1	×	(✔)	×	CMS single-inclusive jets 7 TeV	[147]	1	(1)	×	1	1
ATLAS σ_{tt}^{tot} 7, 8 TeV	[67]	 Image: A set of the set of the	1	1	×	×	CMS dijets 7 TeV	[76]	X		X	×	X
ATLAS σ_{tt}^{tot} 7, 8 TeV	[275 - 280]	×	×	1	×	×	CMS single-inclusive jets 8 TeV	[89]	x		X	1	
ATLAS σ_{tt}^{tot} 13 TeV ($\mathcal{L} = 3.2 \text{ fb}^{-1}$)	[68]	✓	×	1	×	×	CMS 3D dijets 8 TeV	[149]	×		x	×	×
ATLAS σ_{tt}^{tot} 13 TeV ($\mathcal{L} = 139 \text{ fb}^{-1}$)	[136]	×	1	×	×	×	CMS σ^{tot} 5 ToV	[00]	<u> </u>	(•)			
ATLAS σ_{tt}^{tot} and Z ratios	[281]	×	×	×	×	(✔)	$CMS \sigma_{tt}^{tot} 7 8 T_{o}V$	[30]		•	A	<u> </u>	<u> </u>
ATLAS $t\bar{t}$ lepton+jets 8 TeV	[69]	✓	1	×	1	1	$CMS \sigma_{tt}^{tot} R T_{0} V$	[140]		~	C	- Û	
ATLAS $t\bar{t}$ dilepton 8 TeV	[91]	×	1	×	×	 Image: A second s	$CMS \sigma_{t\bar{t}}^{\text{tot}} = 8 \text{ fev}$	[200]	<u></u>	<u> </u>		Û	×
ATLAS single-inclusive jets 7 TeV, $R=0.6$	[75]	 Image: A second s	(✔)	×	1	 Image: A second s	CMS σ_{tt}^{tot} 5, 7, 8, 13 lev	[70, 287-295]		^	×	^	<u></u>
ATLAS single-inclusive jets 8 TeV, $R=0.6$	[88]	×	1	×	×	×	CMS σ_{tt}^{cot} 13 TeV	[71]			· · ·	×	×
ATLAS dijets 7 TeV, $R=0.6$	[148]	×	1	×	×	×	CMS tt lepton+jets 8 TeV	[72]	1	·	×	×	
ATLAS direct photon production 8 TeV	[102]	×	(✔)	×	×	×	$CMS \ tt \ 2D \ dilepton \ 8 \ TeV$	[92]	×	1	×	1	1
ATLAS direct photon production 13 TeV	[103]	×	1	×	×	×	CMS $t\bar{t}$ lepton+jet 13 TeV	[93]	×	1	×	×	×
ATLAS single top R_t 7, 8, 13 TeV	[96, 98, 100]	×	1	1	×	×	CMS $t\bar{t}$ dilepton 13 TeV	[94]	×	1	×	×	×
ATLAS single top diff. 7 TeV	[96]	×	1	×	×	×	CMS single top $\sigma_t + \sigma_{\bar{t}}$ 7 TeV	[97]	×	1	1	×	×
ATLAS single top diff. 8 TeV	[98]	×	1	×	×	×	CMS single top R_t 8, 13 TeV	[99, 101]	×	1	1	×	×
	[]						CMS single top 13 TeV	[296, 297]	×	×	×	×	(🗸)