Perturbative uncertainties

on the $p_T Z/W$ boson spectrum

SM@LHC25 09/04/25 Durham, England

Giulia Marinelli DESY, Hamburg

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE **European Research Council**

Established by the European Commission

Outline

 \rightarrow Color singlet production p_T spectrum

>> Meaningful theory uncertainty and perturbative uncertainty

Correlations

> Scale variations

> Theory Nuisance Parameters (TNPs)

>> Applications with TNPs

 $> \alpha_s(m_Z)$ from $Z p_T$ spectrum

> W mass determination

Color singlet production p_T spectrum

>> Wide-ranging applications, many precise measurements:

<u>ATLAS '20, ATLAS '24, CMS '17, CMS '19, LHCb '16, ...</u>

- > determination of the strong coupling α_s
- > W mass measurement
- > weak mixing angle
- determination of PDFs at full N³LO
- Higgs Yukawa couplings constraining to light quarks

Color singlet production p_T **spectrum**

>> Wide-ranging applications, many precise measurements:

<u>ATLAS '20, ATLAS '24, CMS '17, CMS '19, LHCb '16, ...</u>

- > determination of the strong coupling α_s
- > W mass measurement
- > weak mixing angle
- determination of PDFs at full N³LO
- Higgs Yukawa couplings constraining to light quarks

- >> Many theory requirements to reach $\mathcal{O}(1\%)$ level precision:
 - resummation
 - > perturbative corrections
 - > nonperturbative modeling
 - finite quark mass corrections
 - > electroweak corrections

 $\mathcal{O}\left(\log^{2n}(p_T/m_Z)\right) \longrightarrow N^3 LL' / \operatorname{approx} N^4 LL$

 $\mathcal{O}\left(p_T^2/Q^2\right)$

 $\mathcal{O}\left(\Lambda_{\rm NP}^2/p_T^2\right)$ $\mathcal{O}\left(m_q^2/p_T^2\right)$ $\left(\alpha_{\rm em} \sim \alpha_S^2\right)$

Billis, Michel, Tackmann '25, Moos, Scimeni, Vladimirov, Zurita '24, Camarda, Cieri, Ferrera '23,

Perturbative uncertainty

Consider a series expansion in a small parameter α :

$$f(\alpha) = f_0 + \alpha f_1 + \alpha^2 f_2 + \alpha^3 f_3 + \alpha^4 f_4 + \mathcal{O}(\alpha^5)$$
$$LO: f(\alpha) = \hat{f}_0 \pm \Delta f$$
$$NLO: f(\alpha) = \hat{f}_0 + \alpha \hat{f}_1 \pm \Delta f$$
$$NNLO: f(\alpha) = \hat{f}_0 + \alpha \hat{f}_1 + \alpha^2 \hat{f}_2 \pm \Delta f$$

 Δf is due to the series of the unknown true values $\hat{f}_n \rightarrow \text{missing higher orders (MHOs)}$

Perturbative uncertainty

Consider a series expansion in a small parameter α :

$$f(\alpha) = f_0 + \alpha f_1 + \alpha^2 f_2 + \alpha^3 f_3 + \alpha^4 f_4 + \mathcal{O}(\alpha^5)$$
$$LO: f(\alpha) = \hat{f}_0 \pm \Delta f$$
$$NLO: f(\alpha) = \hat{f}_0 + \alpha \hat{f}_1 \pm \Delta f$$
$$NNLO: f(\alpha) = \hat{f}_0 + \alpha \hat{f}_1 + \alpha^2 \hat{f}_2 \pm \Delta f$$

 Δf is due to the series of the unknown true values $\hat{f}_n \rightarrow \text{missing higher orders (MHOs)}$

Meaningful theory uncertainty:

>> must reflect our degree of knowledge (or ignorance)

>> provide correct correlations for different predictions

>> have a statistical meaning needed for the interpretation of experimental measurements

Taking a differential spectrum, each bin as separate predictions and separate measurements

> points close to each other are not intrinsically correlated, only their uncertainty is!

Taking a differential spectrum, each bin as separate predictions and separate measurements

> points close to each other are not intrinsically correlated, only their uncertainty is!

Let's be realistic: uncertainty band given by scale variations. What about its **shape**?

Taking a differential spectrum, each bin as separate predictions and separate measurements

> points close to each other are not intrinsically correlated, only their uncertainty is!

Let's be realistic: uncertainty band given by scale variations. What about its **shape**?

	ρ_{12}	ρ_{13}	ρ_{23}
a	0	-1	0
b	1	1	1

Taking a differential spectrum, each bin as separate predictions and separate measurements

> points close to each other are not intrinsically correlated, only their uncertainty is!

Let's be realistic: uncertainty band given by scale variations. What about its **shape**?

	ρ_{12}	ρ_{13}	ρ_{23}
a	0	-1	0
b	1	1	1
С	0	0	-1

every line (a, b, c) is a 100 % (anti-) correlated assumption

Taking a differential spectrum, each bin as separate predictions and separate measurements

> points close to each other are not intrinsically correlated, only their uncertainty is!

Let's be realistic: uncertainty band given by scale variations. What about its shape?

	ρ_{12}	ρ_{13}	ρ_{23}
a	0	-1	0
b	1	1	1
С	0	0	-1

every line (a, b, c) is a 100 % (anti-) correlated assumption

no idea about the correct shape of scale variations (and therefore correlation): that's why we take envelopes!

> to get correct correlation: breakdown into independent uncertainty components required

^{4/21.}

Extraction of $\Delta \alpha_s$ with scale variations

In the q_T spectrum each bin has its own theory prediction

>> point-by-point correlation crucial for the determination of the α_s uncertainty

What are we used to do? Scale Variations!

Each variation is a 100 % (anti-) correlated correlation model, strongly impacts the result!

Extraction of $\Delta \alpha_s$ with scale variations

In the q_T spectrum each bin has its own theory prediction

>> point-by-point correlation crucial for the determination of the α_s uncertainty

Each variation is a 100 % (anti-) correlated correlation model, strongly impacts the result!

Sum envelopes of different "sources": $\Delta_{scale} = 2.3$ Naive envelope: $\Delta_{scale} = 1.9$

* uncertainties in units of 10^{-3}

Extraction of $\Delta \alpha_s$ with scale variations

In the q_T spectrum each bin has its own theory prediction

>> point-by-point correlation crucial for the determination of the α_s uncertainty

Each variation is a 100 % (anti-) correlated correlation model, strongly impacts the result!

Sum envelopes of different "sources": $\Delta_{scale} = 2.3$ Naive envelope: $\Delta_{scale} = 1.9$

* uncertainties in units of 10^{-3}

Consider the same series expansion:

all details here Tackmann '24!

$$f(\alpha) = f_0 + \alpha f_1 + \alpha^2 f_2 + \alpha^3 f_3 + \alpha^4 f_4 + \mathcal{O}(\alpha^5)$$

Consider the same series expansion:

all details here Tackmann '24!

$$f(\alpha) = f_0 + \alpha f_1 + \alpha^2 f_2 + \alpha^3 f_3 + \alpha^4 f_4 + \mathcal{O}(\alpha^5)$$

What is the source of the uncertainty?

NNLO :
$$f(\alpha) = \hat{f}_0 + \alpha \hat{f}_1 + \alpha^2 \hat{f}_2 \pm \Delta f$$

Consider the same series expansion:

all details here Tackmann '24!

$$f(\alpha) = f_0 + \alpha f_1 + \alpha^2 f_2 + \alpha^3 f_3 + \alpha^4 f_4 + \mathcal{O}(\alpha^5)$$

What is the source of the uncertainty?

NNLO:
$$f(\alpha) = \hat{f}_0 + \alpha \hat{f}_1 + \alpha^2 \hat{f}_2 \pm \Delta f$$

Parametrize and include the leading source of uncertainty:

N²⁺¹LO:
$$f^{\text{pred}}(\alpha, \theta_3) = \hat{f}_0 + \alpha \hat{f}_1 + \alpha^2 \hat{f}_2 + \alpha^3 f_3(\theta_3)$$

using theory nuisance parameters θ_n ;

>
$$\theta_n$$
 have physical true value $\hat{\theta}_n$, such that $\hat{f}_n = f_n(\hat{\theta}_n)$
... and therefore encode correct theory correlations

> TNPs well-defined parameters with true but unknown value

3 How to *define* these θ_n ?

all details here <u>Tackmann '24</u>!

> simplest case: $f_3(\theta_3) \equiv \theta_3$

better: account for the internal structure of f_3 (given the process: partonic channels, color, ...)

How to **define** these θ_n ?

- simplest case: $f_3(\theta_3) \equiv \theta_3$
- better: account for the internal structure of f_3 (given the process: partonic channels, color, ...)

Consider the q_T spectrum, leading power q_T dependence is known to all orders:

$$q_T \frac{\mathrm{d}\sigma}{\mathrm{d}q_T} = \left[\mathbf{H} \times \mathbf{B}_a \otimes \mathbf{B}_b \otimes \mathbf{S} \right] \left(\alpha_S, L \equiv \ln q_T / m_Z \right) + \mathcal{O}\left(\frac{q_T^2}{m_Z^2} \right)$$

 $F = \{H, B, S\}$ solution to RGE equations

$$F(\alpha_{S}, L) = F(\alpha_{S}) \exp \int_{0}^{L} dL' \{ \Gamma[\alpha_{S}(L')] L' + \gamma_{F}[\alpha_{S}(L')] \}$$

boundary conditions anomalous dimensions

all details here <u>Tackmann '24</u>!

Account for dependencies:

- > in which we need correlations
- > those helping to obtain better theory constraints

$$F(\alpha_{S}) = 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{4\pi}\right)^{n} F_{n} \qquad \qquad \gamma(\alpha_{S}) = \sum_{n=0}^{\infty} \left(\frac{\alpha_{S}}{4\pi}\right)^{n+1} \gamma_{n}$$

$$F_n(\theta_n^f) = 4C_r(4C_A)^{n-1}(n-1)! \theta_n^f \qquad \gamma_n(\theta_n^\gamma) = 4C_r(4C_A)^n \theta_n^\gamma$$

all details here <u>Tackmann '24</u>!

 C_r leading color factor,

 C_A^{n-1} leading *n*-loop color factor

Account for dependencies:

- > in which we need correlations
- > those helping to obtain better theory constraints

$$F(\alpha_{S}) = 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{4\pi}\right)^{n} F_{n} \qquad \qquad \gamma(\alpha_{S}) = \sum_{n=0}^{\infty} \left(\frac{\alpha_{S}}{4\pi}\right)^{n+1} \gamma_{n}$$

 $F_n(\theta_n^f) = 4C_r(4C_A)^{n-1}(n-1)! \theta_n^f \qquad \gamma_n(\theta_n^\gamma) = 4C_r(4C_A)^n \theta_n^\gamma$

 $=4C_r(4C_A)^n \frac{\theta_n^{\gamma}}{\theta_n} \qquad C_A^{n-1}$

8/21.

```
C_r leading color factor,
```

 C_A^{n-1} leading *n*-loop color factor

How to *vary* θ_n ?

With these normalizations, expected natural size $|\hat{\theta}_n| \leq 1$ \longrightarrow $\theta_n = 0 \pm 1$

> look at other known *n*-loop coefficients from population sample <u>here</u>, validated using known perturbative series

all details here <u>Tackmann '24</u>!

Uncertainty breakdown and correlations

all details here Tackmann '24!

Comparing different orders at 95% theory CL

$$(\Delta \theta_n = \pm 2)$$

- > varying each TNP by $\Delta \theta_n = \pm 1(68\% \text{ CL})$
- > providing breakdown into independent sources of uncertainty
- > encoding correct point-by-point correlations

 $^*B_{qj}$: $F_n(z, \theta_n) = 3/2 \theta_n \hat{F}_n(z)$, DGLAP splitting functions not varied

Uncertainty breakdown and correlations

all details here Tackmann '24!

Comparing different orders at 95% theory CL

$$(\Delta \theta_n = \pm 2)$$

- > varying each TNP by $\Delta \theta_n = \pm 1(68\% \text{ CL})$
- > providing breakdown into independent sources of uncertainty
- > encoding correct point-by-point correlations

 $^*B_{qj}$: $F_n(z, \theta_n) = 3/2 \theta_n \hat{F}_n(z)$, DGLAP splitting functions not varied

Relative impacts on W/Z:

all details here <u>Tackmann '24</u>!

uncertainties very similar for Z and W processes: same TNPs for both
each TNP impacts are 100% correlated between the processes:
nice cancellation in the ratio!

*just for illustration: only leading massless contribution

Some applications

Asimov fits for $\alpha_S(m_Z)$ from $Z p_T$ spectrum

WIP Cridge, Marinelli, Tackmann

<u>Asimov fits</u>: standard procedure to estimate expected uncertainties in a fully controlled setting

- \gg study the *dominant* sources of uncertainty and their impact on the extracted α_s
 - not concerned with subleading effects: neglected both in pseudodata and theory model

→ still necessary for fitting real data

Asimov fits for $\alpha_S(m_Z)$ from $Z p_T$ spectrum

WIP Cridge, Marinelli, Tackmann

<u>Asimov fits</u>: standard procedure to estimate expected uncertainties in a fully controlled setting

>> study the *dominant* sources of uncertainty and their impact on the extracted α_s not concerned with subleading effects: neglected both in pseudodata and theory model

Our theory inputs:

SCETlib N³⁺¹LL and N⁴LL only resummed contribution

Our toy data:

> Data defined as central theory prediction [$\alpha_S = 0.118$] [fixed nonp. params, MSHT20aN3LO PDF set]

> 72 data points in ATLAS binning,

9 q_T bins in [0,29] GeV for each 8 *Y* bin in [0.0,3.6] [integrated in q_T , *Y* and *Q*]

Using ATLAS exp. uncertainties and complete correlations for all 72 bins <u>arXiv:2309.12986</u>

Scanning TNPs

12/21.

Repeat fit separately varying each TNP by $\Delta \theta_n = \pm 1$

> providing breakdown into independent sources of uncertainty

> encoding correct point-by-point correlations

> can now sum in quadrature
$$\Delta_{total} = 1.7$$

* uncertainties in units of 10^{-3}

Perturbative uncertainty with profiling TNPs

Profiling: fitting α_S together with all TNPs (allows the fit to decide what to do)

- TNPs are proper parameters, included in the fit with Gaussian constraint $\theta_n = 0 \pm 1$
- > allows data to constrain TNPs and thereby reduce theory uncertainty

Pseudodata: central [$\alpha_s = 0.118$] N⁴LL prediction

> simulates the fit to real data, which contains the all-order result

Perturbative uncertainty with profiling TNPs

Profiling: fitting α_S together with all TNPs (allows the fit to decide what to do)

- TNPs are proper parameters, included in the fit with Gaussian constraint $\theta_n = 0 \pm 1$
- > allows data to constrain TNPs and thereby reduce theory uncertainty

Pseudodata: central [$\alpha_s = 0.118$] N⁴LL prediction

> simulates the fit to real data, which contains the all-order result

Post-fit constraints on TNPs

- > post-fit prediction for q_T spectrum driven by constraints from data
- **>** grey \rightarrow TNP down variation, dashed grey \rightarrow TNP up variation
 - γ_{ν} , S and B_{qg} have the largest remaining impact on $\alpha_s(m_Z)$ after profiling

What happens by changing the prior theory constraint? Using now $\theta_n = 0 \pm \Delta \theta_n$ with $\Delta \theta_n = 1, 2, 4$

Fit $N^{3+1}LL$ against N^4LL data

- > profiling substantially reduces the dependence on theory constraint (with scanning, α_s unc. directly depends on choice of $\Delta \theta_n$)
- the effect relative to the theory constraint strongly depends on the power of the experimental constraint
- > only slight difference in the uncertainties when relaxing the TNP constraint

* uncertainties in units of 10^{-3}

Using now $\theta_n = 0 \pm \Delta \theta_n$ with $\Delta \theta_n = 1$

(Fit $N^{3+1}LL$ against N^4LL data)

 $\Delta \theta_n = 1$ start seeing the exp. constraint

[don't be fooled by the different x-range!]

Using now $\theta_n = 0 \pm \Delta \theta_n$ with $\Delta \theta_n = 2$

(Fit $N^{3+1}LL$ against N^4LL data)

1 $\Delta \theta_n = 1$ start seeing the exp. constraint

2 $\Delta \theta_n = 2$ it's basically a factor 2 w.r.t $\Delta \theta_n = 1$

[don't be fooled by the different x-range!]

Using now $\theta_n = 0 \pm \Delta \theta_n$ with $\Delta \theta_n = 4$

[don't be fooled by the different x-range!]

(Fit $N^{3+1}LL$ against N^4LL data)

1 $\Delta \theta_n = 1$ start seeing the exp. constraint

2
$$\Delta \theta_n = 2$$
 it's basically a factor
2 w.r.t $\Delta \theta_n = 1$

 $\Delta \theta_n = 4$ data can constrain TNPs more

Fremaining impact on $\alpha_s(m_Z)$ after profiling proportional to $\Delta \theta_n$

CMS *W* mass measurement

Recent CMS *W* mass measurement <u>arXiv:2412.13872</u>

> p_T^W modeling fundamental: uncertainties in the low p_T region affect the shape as m_W variation

> theory correlations are crucial: uncertainty propagated from p_T^W to p_T^μ to $m_W!$

CMS *W* mass measurement

Perturbative uncertainties in the resummed prediction: N³⁺⁰LL SCETlib*

> contribution of all theoretical and experimental uncert. before and after profiling

* for details about this order look here

Summary

 $p_T Z/W$ crucial benchmark observables for LHC precision physics program \longrightarrow that's why we need meaningful theory uncertainties!

Correlations are fundamental for interpretation of precision measurements: having meaningful theory uncert. is as important as meaningful exp. uncert.!

1 Theory Nuisance Parameters perfect candidate

- \gg include correct point-by-point correlations across the q_T spectrum, different processes ,...
- >> can be constrained by data reducing theory uncertainty
- >> first applications work as advertised
- 2 Perturbative uncertainty with TNPs
- >> perturbative uncertainty can be correctly profiled
- >> TNPs not "easy and cheap" as scale variation, but worth it!

Backup slides

TNPs for Boundary Conditions

TNPs for Anomalous Dimensions

$$\gamma_n(\theta_n) = 4C_r(4C_A)^n \theta_n^{\gamma}$$

TNPs for BC and ADm

Considering all together from 1 to 4 loop:

Boundary Conditions

Anomalous Dimensions

Very good fit to a Gaussian with $\theta_n \approx 0$ and $\Delta \theta_n \approx 1$

Post-fit constraints on N²⁺¹LL

> $N^{2+1}LL$ strongly pulled, toward correct true values [\star]

> post-fit prediction for q_T spectrum driven by constraints from data

TNPs at N³⁺⁰LL

$N^{3+0}LL$ is an approximation of $N^{3+1}LL$:

consider the N³LL structure but absorb the N³⁺¹LL TNPs uncert. term into the N³LL structure

> The impact of the parameters is only approximately correct!

Limited effect on the overall size of theory uncert., but may have bigger effect on theory correlations

 \longrightarrow if possible prefer the N^{*m*+1}LL prescription!

SCETlib nonperturbative models

Collins-Soper (CS) kernel
$$\tilde{\gamma}_{\nu}(b_T) = \tilde{\gamma}_{\nu}^{\text{pert}} \left(b_6^*(b_T) \right) + \tilde{\gamma}_{\nu}^{\text{nonp}}(b_T)$$

 $\tilde{\gamma}_{\nu}^{\text{nonp}}(b_T) = -\lambda_{\infty} f_{\nu} \left(\frac{\lambda_2}{\lambda_{\infty}} b_T^2 + \frac{\lambda_4}{\lambda_{\infty}} b_T^4 \right)$

Transverse Momentum Distributions (TMDs)

$$\tilde{f}(b_T) = \tilde{f}_{\text{pert}}(b_T) \tilde{f}_{\text{nonp}}(b_T)$$
$$\ln\left(\tilde{f}_{\text{nonp}}(b_T)\right) = -\Lambda_{\infty} b_T f\left(\frac{\Lambda_2}{\Lambda_{\infty}} b_T + \frac{\Lambda_4}{\Lambda_{\infty}} b_T^3\right)$$

 λ_2 , λ_4 and Λ_2 , Λ_4 quadratic/quartic small b_T coefficients λ_{∞} , Λ_{∞} determine $b_T \rightarrow \infty$ behavior

What about $f_{\nu}(x)$ and f(x)?[Collins and Rogers '14]

$$\tilde{\gamma}_{\nu}^{\text{nonp}}(b_T \to 0) \sim b_T^2, \quad \tilde{\gamma}_{\nu}^{\text{nonp}}(b_T \to \infty) \sim const \quad f_{\nu}\left(\frac{\lambda_2}{\lambda_{\infty}}b_T^2 + \frac{\lambda_4}{\lambda_{\infty}}b_T^4\right) = \tanh\left(\frac{\lambda_2}{\lambda_{\infty}}b_T^2 + \frac{\lambda_4}{\lambda_{\infty}}b_T^4\right)$$
$$\log\left(\tilde{f}_{\text{nonp}}(b_T \to 0)\right) \sim b_T^2, \quad \log\left(\tilde{f}_{\text{nonp}}(b_T \to \infty)\right) \sim b_T \quad f\left(\frac{\Lambda_2}{\Lambda_{\infty}}b_T + \frac{\Lambda_4}{\Lambda_{\infty}}b_T^3\right) = 2\tanh\left(\frac{\Lambda_2}{\Lambda_{\infty}}b_T + \frac{\Lambda_4}{\Lambda_{\infty}}b_T^3\right)$$

$\alpha_{s}(m_{7})$ determination from ATLAS [arXiv:2309.12986]

 $\alpha_{\rm S}(m_{\rm Z}) = 0.1183 \pm 0.0009$

28/21.

10

10²

 10^{-3}

10-4

1

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 101002090 COLORFREE)

European Research Council

Established by the European Commission