Measurements of Higgs boson associate production with a leptonically decaying vector boson in the H→bb/cc decay channel within the ATLAS detector

Gabriele D'Anniballe on behalf of the ATLAS collaboration

Standard Model at the LHC 2025 07/04/2025

Università di Pisa

Introduction

Measurements of Higgs boson Yukawa couplings are stringent tests for the validity of the SM

In the quark sector:

- H→bb plays a crucial role in Higgs physics
 - $BR(H \rightarrow bb) \sim 58\%$ (the highest)
 - y_{b} has the largest impact on the Higgs boson's width
 - most sensitive decay channel to study rare Higgs boson processes
 - fundamental in double-Higgs searches
- $H \rightarrow cc$ much more challenging to measure:
 - BR(H→cc)~3%
 - more difficult to identify c-jets, higher backgrounds
 - BSM phenomena can significantly enhance the BR

Nature 607, 52-59 (2022)

Gabriele D'Anniballe - SM@LHC 2025

The V(lep)H process

pp→Z(II)H

- The VH (qq/gg-induced) production channel is the most sensitive mode to access the H→bb and H→cc decays
 - Significant reduction of overwhelming multijet background obtained by requiring the *leptonic decay of the vector boson*
 - Cleaner signatures with 2 b/c-jets, charged leptons and/or E_{T}^{miss}

pp→W(lv)H

The ATLAS VH(bb/cc) analysis

The ATLAS VH(bb/cc) Run2 analysis

- Idea: exploit similarities between VH(bb) and VH(cc) topologies to re-analyze the full Run2 dataset with a single harmonized strategy
 - previous results: <u>resolved VH(bb)</u>, <u>boosted VH(bb)</u>, <u>VH(cc)</u>
- Orthogonal regions in flavour-tagging / p_T^{V} :
- Flavour tagging VH, $H \rightarrow cc$ 0 lepton leptons $p_{T}^{V} = \begin{cases} E_{T}^{\text{miss}} \\ |\vec{E}_{T}^{\text{miss}} + \vec{p}_{T}^{\ l}| \\ |\vec{p}_{T}^{\ l_{1}} + \vec{p}_{T}^{\ l_{2}}| \end{cases}$ 0 lepton c-tagging c-tagged 1 lepton 2 lepton $\sim W$ c-tagged Resolved VH, $H \rightarrow bb$ \bar{a}' leptons leptons 1 lepton b-tagging b-tagged b-tagged Large R iet b-tagged Boosted VH. $H \rightarrow bb$ Z150 GeV 250 GeV 75 GeV 400 GeV 600 GeV p_T^V HIGG-2020-20 2 lepton
- Three analysis channels:

 $\ell = e, \mu, \tau$ (had)

ℓ=e,μ

Jet flavour-tagging: PCFT approach

- Key experimental ingredient: to be able to efficiently distinguish b/c-jets from light-jets (u/d/s- or gluon-initiated)
- Jet flavour tagging performed employing DL1r algorithm
 - DNN architecture, output $[p_b, p_c, p_u]$
 - b-tag and c-tag scores:

$$D_b = \log \left[\frac{p_b}{f_c \cdot p_c + (1 - f_c) \cdot p_u} \right] \quad D_c = \log \left[\frac{p_c}{f_b \cdot p_b + (1 - f_b) \cdot p_u} \right]$$

- Pseudo-Continous-Flavour-Tagging approach (PCFT):
 - orthogonal regions defined in the (D_b, D_c) plane for fixed efficiency working points (*PCFT bins*)
 - dedicated calibrations for each PCFT bin derived on ttbar samples

6

Higgs candidate selection

Resolved ($p_T^V < 400 \text{ GeV}$):

- Reconstructed jets ordered in p_{T} , first two are the Higgs candidate jets (j_1, j_2)
 - VH(bb): exactly two b-tagged jets (BB)
 - **VH(cc)**: at least one c-tagged jet, no b-tagged jets:
 - $C_{T}C = C_{T}C_{T} + C_{T}C_{L}$ $C_{T}C_{N}$
 - \circ **BC_T** and **C_LN** used as control-regions

Boosted VH(bb) $(p_T^V > 400 \text{ GeV})$:

Higgs candidate: leading large-R jet with $m_J > 50 \text{ GeV}$

- At least two matched track-jets (anti- k_T with R $\propto 1/p_T$)
 - $\circ \quad \text{ exactly two b-tagged} \\$

Higgs candidate jet 1

Vector boson candidate (main) selections

Main backgrounds

Main:

- Z+jets
- W+jets
- tt production

Minor:

- single top
- diboson
- multijet (data-driven in 1-lepton)

Event categorization

- Categorization based on
 - the number of *b* and *c*-tagged jets, 0
 - the value p_{τ}^{V} , 0
 - the number of additional jets 0
- Signal regions (SRs)
 - (resolved) continuous cut in $\Delta R(j_1, j_2) p_T^V$ 0
 - (boosted) no additional *b*-tagged track-jet outside the large-R jet 0
- **Control regions** (CRs)
 - needed to have a handle on V+jets and Top production Ο
 - $\Delta R(j_1j_2)$ -based: j_1j_2 with the same flavours as in the signal Tag based CRs: j_1j_2 with the different flavours 0
 - 0

in backup.

10

HIGG-2020-20

 $\Delta R = \sqrt{\left(\Delta\phi\right)^2 + \left(\Delta\eta\right)}$

J2

R = 0.4

Gabriele D'Anniballe - SM@LHC 2025

Analysis strategy

- 1. MVA based on a set of boosted decision trees (BDTs)
 - innovative approach for VH(cc) and boosted VH(bb) previously based on m_H
- 2. Global (binned) maximum likelihood fit used to extract parameters of interests (POIs).
 - Complex likelihood structure due to large number of regions and variables.

Results

Diboson cross-check

Alternative set of BDTs trained to extract **V(lep)Z(bb/cc)** diboson processes from background.

- BDTs evaluated on the same events categorized in the SRs
- Powerful test to validate the V(lep)H(bb/cc) analysis

Compatible results with SM expectations.

VZ(bb):

- WZ(bb): 6.4 σ (6.5 σ) obs. (exp.) \rightarrow First observation
- ZZ(bb): more than 10σ

VZ(cc):

- WZ(cc): 3.9σ (2.7σ) obs. (exp.)
- ZZ(cc): 3.1σ (4.3σ) obs. (exp.)

Combination: 5.2σ (5.3σ) obs. (exp.) \rightarrow First observation

VH signal strength results

$$\mu \equiv \frac{(\sigma \times BR)_{\rm meas}}{(\sigma \times BR)_{\rm SM}}$$

Simultaneous extraction of VH(bb) and VH(cc) signal strengths. VH(bb) also decorrelated in WH(bb) and ZH(bb).

VH signal strength results

Simultaneous extraction of VH(bb) and VH(cc) signal strengths. VH(bb) also decorrelated in WH(bb) and ZH(bb).

- 15%-level of precision reached on VH(bb) obs (exp) 7.4 σ (8.0 σ)
 - 4.9σ (5.6σ) on ZH(bb)
 - \circ 5.3σ (5.5σ) on WH(bb) → First observation

 $\mu_{VH}^{bb} = 0.92_{-0.15}^{+0.16} = 0.92 \pm 0.10 \text{ (stat.)}_{-0.11}^{+0.13} \text{ (syst.)}$ $\mu_{VH}^{cc} = 1.0_{-5.2}^{+5.4} = 1.0_{-3.9}^{+4.0} \text{ (stat.)}_{-3.5}^{+3.7} \text{ (syst.)}.$

Gabriele D'Anniballe - SM@LHC 2025

VH signal strength results

Simultaneous extraction of VH(bb) and VH(cc) signal strengths. VH(bb) also decorrelated in WH(bb) and ZH(bb).

- 15%-level of precision reached on VH(bb) obs (exp) 7.4 σ (8.0 σ)
 - 4.9σ (5.6σ) on ZH(bb)
 - \circ 5.3σ (5.5σ) on WH(bb) → First observation
- obs (exp) 11.5 (10.6) 95% upper limit on VH(cc)
 - more than a factor 2x better wrt previous VH(cc) round
 - \circ most stringent upper limit on $\mu_{VH(cc)}$ to date

$$\begin{split} \mu_{VH}^{bb} &= 0.92^{+0.16}_{-0.15} = 0.92 \pm 0.10 \text{ (stat.)}^{+0.13}_{-0.11} \text{ (syst.)} \\ \mu_{VH}^{cc} &= 1.0^{+5.4}_{-5.2} = 1.0^{+4.0}_{-3.9} \text{ (stat.)}^{+3.7}_{-3.5} \text{ (syst.)}. \end{split}$$

 $(\sigma \times BR)_{meas}$

Gabriele D'Anniballe - SM@LHC 2025

STXS VH(bb) measurements

Differential VH(bb) cross section measurement in p_T^{V} bins (STXS Reduced stage 1.2)

- New bin at low p_T^V (75-150 GeV) for WH(bb)
- New splitting for boosted regime
 - >400 → 400-600, > 600

Overall compatibility with SM: 90%

STXS VH(bb) measurements

Differential VH(bb) cross section measurement in p_T^V bins and $N_{add-jets}$ (STXS Reduced stage 1.2)

- New bin at low p_T^V (75-150 GeV) for WH(bb)
- New splitting for boosted regime \circ >400 \rightarrow 400-600, > 600
- Splitting in N_{add-jets} for resolved ZH(bb) regime

Overall compatibility with SM: 90%

$$\kappa_i^2\equiv\Gamma^i/\Gamma_{SM}^i$$

Fit results reinterpreted in the scope of the κ -modifiers framework. Only $\kappa_{_{D}}$ and $\kappa_{_{C}}$ parameterization.

$$\kappa_i^2 \equiv \Gamma^i/\Gamma_{SM}^i$$

Fit results reinterpreted in the scope of the κ -modifiers framework. Only κ_b and κ_c parameterization. 1D scans (for $|\kappa_b|$ and $|\kappa_c|$ limits)

20

$$\kappa_i^2\equiv\Gamma^i/\Gamma_{SM}^i$$

Fit results reinterpreted in the scope of the κ -modifiers framework. Only κ_{b} and κ_{c} parameterization. 1D scans (for $|\kappa_{b}|$ and $|\kappa_{c}|$ limits), 2D scan

21

$$\kappa_i^2\equiv\Gamma^i/\Gamma_{SM}^i$$

22

Fit results reinterpreted in the scope of the κ -modifiers framework. Only κ_{b} and κ_{c} parameterization. 1D scans (for $|\kappa_{b}|$ and $|\kappa_{c}|$ limits), 2D scan, $|\kappa_{c}/\kappa_{b}|$ limit extraction (no dependence on Γ_{H} assumptions)

Conclusions

Overview of the ATLAS VH(bb/cc) analysis

- combination of VH(bb) resolved, VH(cc), and VH(bb) boosted measurements
 - ad hoc 2D PCFT approach
 - MVA approach extended to VH(cc) and boosted VH(bb)
 - coherent modelling of main backgrounds in dedicated CRs
- significant achievements:
 - first observation of WZ(bb), VZ(cc) and WH(bb)
 - >100% improvement in VH(cc) limit, best observed constrain up to date
 - more granular STXS VH(bb) measurements
 - \circ $\;$ Higgs flavour universality excluded at 3σ level

Backup

PCFT scale factors

Dijet mass corrections

27

Monte Carlo samples

Process	ME generator	ME PDF	PS and Hadronisation	UE tune	Cross-section order			
Signal, mass set to 125 GeV and $b\bar{b}$ branching fraction to 58%								
$qq \rightarrow VH$	Powheg Box v2 + GoSam + MiNLO	PDF4LHC15NLO	Рутніа 8.245	AZNLO	NNLO(QCD) ^(†) + NLO(EW)			
$gg \rightarrow ZH$	Powheg Box v2	PDF4LHC15NLO	Рутніа 8.245	AZNLO	NLO+ NLL			
Top quark, mass set to								
<i>tī</i> s-chan. single top <i>t</i> -chan. single top <i>Wt</i>	Powheg Box v2 Powheg Box v2 Powheg Box v2 Powheg Box v2	NNPDF3.0NLO NNPDF3.0NLO NNPDF3.0NLO NNPDF3.0NLO	Рутніа 8.230 Рутніа 8.230 Рутніа 8.230 Рутніа 8.230 Рутніа 8.230	A14 A14 A14 A14	NNLO+NNLL NLO NNLO Approx. NNLO+NNLL			
Vector boson + jets								
V+ jets	Sherpa 2.2.11	NNPDF3.0NNLO	Sherpa 2.2.11	Default	NNLO			
Diboson								
$q \overline{q} \to VV$ $g g \to VV$	Sherpa 2.2.11 Sherpa 2.2.2	NNPDF3.0NNLO NNPDF3.0NNLO	Sherpa 2.2.11 Sherpa 2.2.2	Default Default	NLO ^(‡) NLO ^(‡)			

Event selection

Analysis regime	resolved $VH(\rightarrow b\bar{b})$	$VH(\rightarrow c\bar{c})$					
	Com	mon Selections					
Jets	2	2 signal jets					
Candidate jets tagging	2 B-tags	$\geq 1 \text{ T-tag}^{a}$					
Leading Higgs candidate jet pT	A	> 45 GeV					
Sub-leading Higgs candidate jet pT		> 20 GeV					
mbb or mcc	> 50 GeV (before correction)						
ΔR (jet1, jet2)	Upp	er cut $\Delta R < \pi$					
		0 Lepton					
Trigger	E	T triggers					
Jets	\leq 4 jets	\leq 3 jets					
Additional jets tagging	no T-tag	no B-tag ^b					
Leptons	0 V.	H-loose lepton					
E_T^{miss}		> 150 GeV					
ST	> 120 (2 jet	s), >150 GeV (3p jets)					
mr	> 10 GeV (for event	s with at least one hadronic τ)					
$ \min\Delta\phi(E_T^{\text{miss}}, \text{jet}) $	> 20° (2	jets), > 30°(3 jets)					
$\left \Delta\phi(E_T^{\text{miss}},H)\right $	> 120°						
$ \Delta\phi(\text{jet1}, \text{jet2}) $	< 140°						
		1 Lepton					
Trigger	e channel: single electron trigger						
	μ channel: single r	nuon trigger ($p_T^V < 150 \text{ GeV}$)					
	and E_T^m	ss triggers (above)					
Jets		≤ 3 jets					
Additional jets tagging	no T-tag	no B-tag ^b					
Leptons	1 W	H-signal lepton					
	> 1 VH	-loose lepton veto					
Emiss	> 30	GeV (e channel)					
ST	> 120 (2 jets), >150 GeV	(3 jets) (μ channel with E_{T}^{miss} trigger)					
m_T^W	> 20 GeV (75	$< p_T^V < 150$ GeV only)					
		2 Lepton					
Trigger	e channel:	single electron trigger					
	μ channel: single r	nuon trigger ($p_T^V < 250 \text{ GeV}$)					
	and E_T^m	ss triggers (above)					
Additional jets tagging	- 1	no B-tag					
Leptons	2 VH-loose leptons						
	(≥ 1 Z	H-signal lepton)					
	Same flavour	, opposite-charge for $\mu\mu$					
m _{II}	81 <	$m_{11} < 101 \text{ GeV}$					

Event categorization

Flavour tagging	Î												
	нс	2 iota	2 iota	> 4 inte	2 iota	2 ioto	> 4 ioto	2 ioto	2 into	> 4 ioto			
> 1 tight c-tag Lepton flavour eµ	2L	Top eµ CR	Top	eµ CR	Top eµ CR	Top e	ри CR	Top eµ CR	Top e	eµ CR			
		2 jets	3 jets	≥ 4 jets	2 jets	3 jets	≥ 4 jets	2 jets	3 jets	≥ 4 jets			
1 no tag	OL				CR	CR		CR	CR				
1 loose c-tag (CLN tag)	Ŧ	CR	CR		CR	CR		CR	CR				
(0 <u>[</u>], (ug)	2L	CR		CR	CR	с	R	CR	C	R			
	1	2 jets	3 jets	≥ 4 jets	2 jets	3 jets	≥ 4 jets	2 jets	3 jets	≥ 4 jets			
1 no c-tag	OL				SR High ∆R CR	SR High ΔR CR		SR High ΔR CR	SR High ΔR CR				
1 tight c-tag (CTN tag)	Ŧ	SR High ∆R CR	SR High ∆R CR		SR High ΔR CR	SR High ∆R CR		SR High ∆R CR	SR High ∆R CR				
(0111 (03)	2L	SR High ∆R CR	High	SR AR CR	SR High ∆R CR	S High Z	R MR CR	SR High ∆R CR	S High Z	AR CR			
1 loose c-tag	0	2 iets	3 jets	≥ 4 iets	2 jets	3 iets	≥ 4 iets	2 iets	3 jets	≥ 4 iets			
1 tight c-tag	OL				SR High ∆R CR 1	SR High AR CR 1		SR High ∆R CR 1	SR High ΔR CR 1				
(C⊤C∟ tag) +	Ŧ	SR High ΔR CR 1	SR High ∆R CR 1		SR High ∆R CR 1	SR High ΔR CR 1		SR High ∆R CR 1	SR High ΔR CR 1		¹ Note: High ΔR CR split into tight c-tag and 2 tight c-tag	1 loose c-tag + 1 regions	
2 tight c-tag (C⊤C⊤ tag)	2L	SR High ΔR CR 1	High	SR AR CR 1	SR High ∆R CR 1	S High ∆	R CR 1	SR High ∆R CR 1	S High ∆	R CR 1	² Note: 4+jets in 2-lepton, =4	i jets everywhere else	
	Co	mmon Top	CR										
1 tight c-tag	4	2 jets	3 jets	4 jets	2 jets	3 jets	4 jets	2 jets	3 jets	4 jets			
1 b-tag	6			_	Top(bc) CR	Top(bc) CR	Top(bc) CR	Top(bc) CR	Top(bc) CR	Top(bc) CR			
(BCT tag)	=	Top(bc) CR	Top(bc) CR		Top(bc) CR	Top(bc) CR		Top(bc) CR	Top(bc) CR				
	Re	solved Hbb									Boosted Hbb		
	4	2 jets	3 jets	≥ 4 jets ²	2 jets	3 jets	≥ 4 jets ²	2 jets	3 jets	≥ 4 jets ²			
	OL				- SR High ΔR CR	- SR High ΔR CR	- SR High ΔR CR	- SR High ΔR CR	- SR High ΔR CR	SR High ΔR CR	d SR Top CR	SR Top CR	
2 b-tag		Low AR CR	Low AR CR		Low AR CR	Low AR CR		Low AR CR	Low AR CR		SB	SB	
(DD tag)	1L	SR High ∆R CR	SR High ∆R CR		SR High ∆R CR	SR High ∆R CR		SR High ΔR CR	SR High ∆R CR		Top CR	Top CR	
	2L	SR High ∆R CR	SR High ∆R CR	SR High ΔR CR	SR High ∆R CR	SR High ∆R CR	SR High ∆R CR	SR High ∆R CR	SR High ΔR CR	SR High ∆R CR	TN SR	SR	
75 (GeV			150	i GeV		250	i GeV		400	GeV 600	l GeV	p _T v

30

MVA input features

	Resolve	d <i>VH</i> , <i>H</i> –	$\rightarrow b\bar{b}, c\bar{c}$	Boosted VH, $H \rightarrow b\bar{b}$			
Variable	0-lepton	1-lepton	2-lepton	0-lepton	1-lepton	2-lepton	
m _H	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$m_{j_1 j_2 j_3}$	\checkmark	\checkmark	\checkmark				
$p_{\mathrm{T}}^{j_{\mathrm{I}}}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$p_{\mathrm{T}}^{j_2}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$p_{\mathrm{T}}^{j_3}$				\checkmark	\checkmark	\checkmark	
$\sum p_{\rm T}^{j_i}, i > 2$	\checkmark	\checkmark	\checkmark				
$\operatorname{bin}_{D_{\mathrm{DL1r}}}(j_1)$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$\operatorname{bin}_{D_{\mathrm{DL1r}}}(j_2)$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
p_{T}^{V}	$\equiv E_{\rm T}^{\rm miss}$	\checkmark	\checkmark	$\equiv E_{\rm T}^{\rm miss}$	\checkmark	\checkmark	
$E_{ m T}^{ m miss}$	\checkmark	\checkmark		\checkmark	\checkmark		
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{S_{\mathrm{T}}}$			\checkmark				
$ \Delta \phi(m{V},m{H}) $	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$ \Delta y(\boldsymbol{V}, \boldsymbol{H}) $		\checkmark	\checkmark		\checkmark	\checkmark	
$\Delta R(\boldsymbol{j_1}, \boldsymbol{j_2})$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$\min[\Delta R(j_i, j_1 \text{ or } j_2)], i > 2$	\checkmark	\checkmark					
N(track-jets in J)				\checkmark	\checkmark	\checkmark	
N(add. small-R jets)				\checkmark	\checkmark	\checkmark	
colour ring				\checkmark	\checkmark	\checkmark	
$ \Delta\eta(m{j_1},m{j_2}) $	\checkmark						
H_{T} + $E_{\mathrm{T}}^{\mathrm{miss}}$	\checkmark						
$m_{ m T}^W$		\checkmark					
m _{top}		\checkmark					
$\min[\Delta\phi(\boldsymbol{\ell}, \boldsymbol{j_1} \text{ or } \boldsymbol{j_2})]$		\checkmark					
p_{T}^{ℓ}					\checkmark		
$(p_{\rm T}^{\ell} - E_{\rm T}^{\rm miss})/p_{\rm T}^{V}$					\checkmark		
$m_{\ell\ell}$			\checkmark				
$\cos \theta^*(\ell^-, V)$			\checkmark			\checkmark	

Gabriele D'Anniballe - SM@LHC 2025

HIGG-2020-20

31

Variables used in the CRs

Channel	Region	BB	$ C_TN C_TC_L $	$C_T C_T$	BC _T	C _L N
	High- ΔR CR	No	orm. Only			_
0-lepton	BC _T Top CR		_		$m_{j_1 j_2}$	
	V + lf CR		Norm. Only			
	Low- ΔR CR	$BDT_{Low-\Delta R CR}$		ī.——-		
	High- ΔR CR	p_{T}^{V}		_		
1-lepton	BC _T Top CR		$m_{j_1 j_2}$			
	V + lf CR		3	p_{T}^{V}		
2	High- ΔR CR	p_{T}^{V}	m_{j_1}	<i>j</i> 2		_
2-lepton	Top $e\mu$ CR	_	Norm. On	ly	-	_
	V + lf CR		p_{T}^{V}			

Some post-fit distributions

2jets, BB-tag, $150 < p_T^V < 250 \text{ GeV}$

Some post-fit distributions

2jets, C_T C-tag, 150 < p_T^V < 250 GeV

Some post-fit distributions

2jets, C_T C-tag, 150 < p_T^V < 250 GeV

 $\log_{10}(S/B)$

Post-fit normalizing factors

Number of jets	W+hf	W+mf	W+lf
2	1.09 ± 0.06	1.20 ± 0.03	1.03 ± 0.04
≥3	1.30 ± 0.07	1.16 ± 0.04	1.07 ± 0.05
2	1.00 ± 0.05	1.31 ± 0.03	1.08 ± 0.03
≥3	1.28 ± 0.07	1.31 ± 0.04	1.07 ± 0.04
2	0.97 ± 0.08	1.35 ± 0.07	1.05 ± 0.03
Number of jets $W + hf$ W 2 1.09 ± 0.06 1.20 ≥ 3 1.30 ± 0.07 1.10 2 1.00 ± 0.05 1.33 ≥ 3 1.28 ± 0.07 1.33 ≥ 3 1.28 ± 0.07 1.33 ≥ 3 1.46 ± 0.12 1.33 ≥ 3 1.46 ± 0.12 1.32 $ 1.49 \pm 0.22$ $ 2.03 \pm 0.23$ $-$	1.32 ± 0.07	1.10 ± 0.04	
-	1.49 :	—	
-	2.03 =	± 0.25	-
	Number of jets2 ≥ 3 2 ≥ 3 2 ≥ 3	Number of jets $W + hf$ 2 1.09 ± 0.06 ≥ 3 1.30 ± 0.07 2 1.00 ± 0.05 ≥ 3 1.28 ± 0.07 2 0.97 ± 0.08 ≥ 3 1.46 ± 0.12 - $1.49 =$ - $2.03 =$	Number of jets $W + hf$ $W + mf$ 2 1.09 ± 0.06 1.20 ± 0.03 ≥ 3 1.30 ± 0.07 1.16 ± 0.04 2 1.00 ± 0.05 1.31 ± 0.03 ≥ 3 1.28 ± 0.07 1.31 ± 0.04 2 0.97 ± 0.08 1.35 ± 0.07 ≥ 3 1.46 ± 0.12 1.32 ± 0.07 - 1.49 ± 0.25 - 2.03 ± 0.25

$p_{\rm T}^V$ interval	Number of jets	Z+ hf	Z+mf	Z+lf
75 150 C AV	2	1.20 ± 0.04	1.04 ± 0.04	1.12 ± 0.03
/5-150 Gev	≥3	1.49 ± 0.06	1.11 ± 0.05	1.12 ± 0.05
	3/≥3	0.77 ± 0.03	-	_
150, 250 GeV	2	1.30 ± 0.04	1.08 ± 0.04	1.17 ± 0.02
150-250 000	≥3	1.59 ± 0.07	1.14 ± 0.05	1.17 ± 0.04
	3/≥3	0.80 ± 0.04	-	-
250, 400 GaV	2	1.40 ± 0.07	1.31 ± 0.08	1.16 ± 0.03
230-400 Cev	≥3	1.78 ± 0.09	1.32 ± 0.07	1.20 ± 0.04
	3/≥3	0.74 ± 0.04	-	-
>400 GeV	-	1.63 =	± 0.13	_

$p_{\rm T}^V$ interval	Number of jets	Top(bb)	Top(bq,qq)	Top 2L		
75 150 C V	2	1.02 ± 0.04	0.98 ± 0.05	1.05 ± 0.05		
75–150 Gev	3	0.97 ± 0.03	0.98 ± 0.03	0.98 ± 0.05		
	2	0.89 ± 0.05	0.83 ± 0.04	1.07 ± 0.16		
150-250 GeV	3	0.91 ± 0.03	0.86 ± 0.03	0.05 + 0.14		
150-250 000	4	0.97 ± 0.02	0.95 ± 0.03	0.93 ± 0.14		
250, 400 GeV	2	0.78 ± 0.08	0.82 ± 0.05			
230-400 000	3	0.83 ± 0.04	0.80 ± 0.03	1.10 ± 0.50		
	4	0.93 ± 0.05	0.86 ± 0.04			
400-600 GeV	-	0.83 =	± 0.05	_		
>600 GeV	-	0.69 =	0.69 ± 0.07			

Uncertainties breakdown

Source of un	certainty	σ_{μ}								
		$VH, H \rightarrow b\bar{b}$	$WH, H \rightarrow b\bar{b}$	$ZH, H \rightarrow b\bar{b}$	$VH, H \rightarrow c\bar{c}$					
Total		0.153	0.204	0.216	5.31					
Statistical		0.097	0.139	0.153	3.94					
Systematic		0.118	0.149	0.153	3.57					
Statistical un	certainties									
Data statistic	cal	0.090	0.129	0.139	3.67					
$t\bar{t} \ e\mu$ control	region	0.009	0.014	0.027	0.08					
Background	floating normalisations	0.034	0.049	0.042	1.24					
Other VH flo	pating normalisation	0.007	0.018	0.014	0.33					
Simulation s	amples size	0.023	0.033	0.030	1.62					
Experimenta	l uncertainties									
Jets		0.027	0.035	0.030	1.02					
$E_{ ext{T}}^{ ext{miss}}$		0.010	0.005	0.021	0.23					
Leptons		0.003	0.002	0.010	0.25					
	<i>b</i> -jets	0.020	0.018	0.026	0.29					
<i>b</i> -tagging	<i>c</i> -jets	0.013	0.017	0.012	0.73					
	light-flavour jets	0.005	0.008	0.008	0.66					
Pile-up	• pr Dr	0.008	0.017	0.002	0.23					
Luminosity		0.006	0.007	0.006	0.08					
Theoretical a	and modelling uncertaint	ies								
Signal		0.076	0.074	0.101	0.72					
Z + jets		0.042	0.018	0.081	1.77					
W + jets		0.054	0.087	0.026	1.42					
$t\bar{t}$ and Wt		0.018	0.033	0.018	1.02					
Single top-q	uark (s-, t-ch.)	0.010	0.018	0.002	0.16					
Diboson		0.033	0.039	0.049	0.52					
Multijet		0.005	0.010	0.005	0.55					

STXS measurements

STXS region			SM prediction			Measurement			Stat. unc.	Sys	st. unc. [fb]]
Process	$p_{\rm T}^{V, t}$ interval	$N_{\rm jet}^{\rm t}$		[fb]			[fb]		[fb]	Th. sig.	Th. bkg.	Exp.
	75–150 GeV	≥ 0	79.2	±	2.8	3	±	102	41	13	89	36
	150-250 GeV	≥ 0	24.3	±	1.0	23	±	10	7	2	7	3
$W(\ell u)H$	250-400 GeV	≥ 0	5.90	±	0.25	7.9	±	2.1	1.8	0.5	0.8	0.3
	400-600 GeV	≥ 0	1.03	±	0.05	-0.11	±	0.54	0.46	0.05	0.25	0.09
	> 600 GeV	≥ 0	0.20	±	0.01	0.26	±	0.21	0.20	0.02	0.04	0.03
.6		≥ 0	50.7	±	3.9	51	±	32	24	5	18	11
	75–150 GeV	=0	29.9	±	2.5	38	±	22	17	3	12	6
		≥1	20.7	±	2.6	6	±	25	22	4	9	8
		≥ 0	18.7	±	3.5	17.7	±	5.8	4.6	1.7	3.0	1.0
7(001)11	150-250 GeV	=0	9.0.	±	1.3	8.0	±	3.1	2.7	0.6	1.4	0.5
$Z(\ell\ell/\nu\nu)H$		≥1	9.7	±	1.9	11.6	±	7.1	6.1	1.0	3.2	1.4
		≥ 0	4.15	±	0.45	3.5	±	1.5	1.3	0.4	0.5	0.2
	250-400 GeV	=0	1.70	±	0.22	1.31	±	0.72	0.66	0.14	0.25	0.10
	-	≥1	2.45	±	0.45	2.7	±	2.1	1.9	0.3	0.7	0.3
	400–600 GeV	≥0	0.62	±	0.05	0.61	±	0.40	0.37	0.05	0.12	0.08
	> 600 GeV	≥0	0.11	±	0.01	-0.10	±	0.12	0.12	0.01	0.03	0.01

Lepton channel decorrelation

STXS correlations

VH(cc) projections for HL-LHC

VH(bb) projections for HL LHC

Gabriele D'Anniballe - SM@LHC 2025

-PHYS-PUB-2025-012