

Exploring Surprising Non-Perturbative Effects in Drell-Yan plus Jets

Standard Model at the LHC 2025

Stefan Gieseke, **Maximilian Horzela**, Manjit Kaur, Dari Leonardi, Klaus Rabbertz, Aayushi Singla, Cedric Verstege

unless otherwise indicated the presented contents were originally made public on arXiv:2412.19694

Triple Differential Measurement of Dijet

 Multidifferential cross section measurement with LHC data unfolded for detector effects EPJC 77 (2017) 746, EPJC 85 (2025) 72

$$\langle p_T \rangle \leftarrow$$
 Energy scale of hard collision

Triple Differential Measurement of Dijet

- Multidifferential cross section measurement with LHC data unfolded for detector effects EPJC 77 (2017) 746, EPJC 85 (2025) 72
 - $\begin{array}{l} \langle p_T \rangle \leftarrow \text{Energy scale of hard collision} \\ y_b = \frac{1}{2} |y^{\text{jet1}} + y^{\text{jet2}}| \leftarrow x_1, x_2 \\ y^* = \frac{1}{2} |y^{\text{jet1}} y^{\text{jet2}}| \leftarrow \text{Flavour contributions} \end{array}$
- $\rightarrow\,$ Tuned for tests and interpretations of perturbative modelling, i.e. PDFs

Triple Differential Measurement of Z+Jet

- Multidifferential cross section measurement with LHC data unfolded for detector effects EPJC 77 (2017) 746, EPJC 85 (2025) 72
 - $p_T^Z \leftarrow \text{Energy scale of hard collision}$ $y_b = \frac{1}{2} |y^Z + y^{\text{jet1}}| \leftarrow x_1, x_2$ $y^* = \frac{1}{2} |y^Z - y^{\text{jet1}}| \leftarrow \text{Flavour contributions}$
- \rightarrow Tuned for tests and interpretations of perturbative modelling, i.e. PDFs
 - Add complementary sensitivity with additional final states

Non-perturbative Contributions to Dijet

- Estimation of non-perturbative (NP) effects
 - $\rightarrow\,$ Additional precision limitations for perturbative interpretation
- NP correction factor

$$\mathcal{C}_{\mathsf{NP}} = \frac{\mathsf{ME} + \mathsf{PS} + \mathsf{Had} + \mathsf{MPI}}{\mathsf{ME} + \mathsf{PS}}$$

Non-perturbative Contributions to Dijet

- Estimation of non-perturbative (NP) effects
 - \rightarrow Additional precision limitations for perturbative interpretation
- NP correction factor

$$C_{\mathsf{NP}} = \frac{\mathsf{ME} + \mathsf{PS} + \mathsf{Had} + \mathsf{MPI}}{\mathsf{ME} + \mathsf{PS}}$$

- Diminish towards high $\langle p_T \rangle$
- Independent of perturbative order in QCD
- No significant y_b dependence

Non-perturbative Contributions to Dijet

- Estimation of non-perturbative (NP) effects
 - $\rightarrow\,$ Additional precision limitations for perturbative interpretation
- NP correction factor

$$C_{\mathsf{NP}} = \frac{\mathsf{ME} + \mathsf{PS} + \mathsf{Had} + \mathsf{MPI}}{\mathsf{ME} + \mathsf{PS}}$$

- Diminish towards high $\langle p_T \rangle$
- Independent of perturbative order in QCD
- No significant y_b dependence
- No significant y* dependence

Non-perturbative Contributions to Z+Jet

- Estimation of non-perturbative (NP) effects
 - $\rightarrow\,$ Additional precision limitations for perturbative interpretation
- NP correction factor

$$C_{\mathsf{NP}} = \frac{\mathsf{ME} + \mathsf{PS} + \mathsf{Had} + \mathsf{MPI}}{\mathsf{ME} + \mathsf{PS}}$$

- Diminish towards high p_T^Z
- No significant y_b dependence

Non-perturbative Contributions to Z+Jet

- Estimation of non-perturbative (NP) effects
 - \rightarrow Additional precision limitations for perturbative interpretation
- NP correction factor

$$C_{\mathsf{NP}} = \frac{\mathsf{ME} + \mathsf{PS} + \mathsf{Had} + \mathsf{MPI}}{\mathsf{ME} + \mathsf{PS}}$$

- Diminish towards high p_T^Z
- No significant y_b dependence
- Increase towards high *y**

Non-perturbative Contributions to Z+Jet

- Estimation of non-perturbative (NP) effects
 - $\rightarrow\,$ Additional precision limitations for perturbative interpretation
- NP correction factor

$$C_{\mathsf{NP}} = \frac{\mathsf{ME} + \mathsf{PS} + \mathsf{Had} + \mathsf{MPI}}{\mathsf{ME} + \mathsf{PS}}$$

- Diminish towards high p_T^Z
- Decrease at higher perturbative order
- No significant y_b dependence
- Increase towards high *y**

Hadronization Effects in Z+Jet

• Estimate influence by Hadronization with

$$C_{\mathsf{Had}} = \frac{\mathsf{ME} + \mathsf{PS} + \mathsf{Had}}{\mathsf{ME} + \mathsf{PS}}$$

- Diminish towards high p_T^Z
- Decrease towards low p_T^Z , expected due to out-of-cone effects
- No significant y_b dependence

Hadronization Effects in Z+Jet

• Estimate influence by Hadronization with

$$C_{\mathsf{Had}} = \frac{\mathsf{ME} + \mathsf{PS} + \mathsf{Had}}{\mathsf{ME} + \mathsf{PS}}$$

- Diminish towards high p_T^Z
- Decrease towards low p_T^Z , expected due to out-of-cone effects
- No significant y_b dependence
- No significant y* dependence

Underlying Event (UE) Effects in Z+Jet

• Estimate influence by MPI with

$$C_{\mathsf{MPI}} = \frac{\mathsf{ME} + \mathsf{PS} + \mathsf{MPI}}{\mathsf{ME} + \mathsf{PS}}$$

- Diminish towards high p_T^Z
- Increase towards low p^Z_T, expected due to MPI partons migrating into jets
- No significant y_b dependence

Underlying Event (UE) Effects in Z+Jet

• Estimate influence by MPI with

$$C_{\mathsf{MPI}} = \frac{\mathsf{ME} + \mathsf{PS} + \mathsf{MPI}}{\mathsf{ME} + \mathsf{PS}}$$

- Diminish towards high p_T^Z
- Increase towards low p^Z_T, expected due to MPI partons migrating into jets
- No significant y_b dependence
- Decrease at higher perturbative order
- Increase towards high *y**
- $\rightarrow\,$ Origin of observed trends in UE modelling

A Deeper Look into the UE in Z+Jet

- Measure activity, e.g. N_{ch} , $\sum_{i=1}^{N_{ch}} p_T^{ch}$, in "Rick-Field-style" analysis
 - Towards: Leading hard object
 - Away: Hard hadronic recoil
 - Transverse: Soft UE contributions
 - $\rightarrow\,$ Important input for tuning of UE models

A Deeper Look into the UE in Z+Jet

- Measure activity, e.g. N_{ch} , $\sum_{i=1}^{N_{ch}} p_T^{ch}$, in "Rick-Field-style" analysis
 - Towards: Leading hard object
 - Away: Hard hadronic recoil
 - Transverse: Soft UE contributions
 - \rightarrow Important input for tuning of UE models
- Most recent analyses by ATLAS EPJC 79666 (2019) and CMS JHEP 2018 32 (2018) with $\sqrt{s}=13~{\rm TeV}$ low-pileup data
 - Single differential in p_T^Z
 - \rightarrow What to expect differentially in y^* (y_b)?

- Showing $\sum_{i=1}^{N_{ch}} p_T^{ch}$, same for N_{ch}
- No significant y_b dependence

- Showing $\sum_{i=1}^{N_{ch}} p_T^{ch}$, same for N_{ch}
- No significant y_b dependence
- Increase towards high y^*

- Showing $\sum_{i=1}^{N_{ch}} p_T^{ch}$, same for N_{ch}
- No significant y_b dependence
- Increase towards high y^*
- Slight differences in shape and yields, but consistent trends when switching MPI model

- Showing $\sum_{i=1}^{N_{ch}} p_T^{ch}$, same for N_{ch}
- No significant y_b dependence
- Increase towards high y^*
- Slight differences in shape and yields, but consistent trends when switching MPI model
- Slight dependence on perturbative order

• Showing $\sum_{i=1}^{N_{ch}} p_T^{ch}$, same for N_{ch}

• Showing $\sum_{i=1}^{N_{ch}} p_T^{ch}$, same for N_{ch}

- Showing $\sum_{i=1}^{N_{ch}} p_T^{ch}$, same for N_{ch}
- MPI (and Hadronization) introduce additional activity

- Showing $\sum_{i=1}^{N_{ch}} p_T^{ch}$, same for N_{ch}
- MPI (and Hadronization) introduce additional activity
- Some trend in *y** already visible at parton shower level

- Showing $\sum_{i=1}^{N_{ch}} p_T^{ch}$, same for N_{ch}
- MPI (and Hadronization) introduce additional activity
- Some trend in y* already visible at parton shower level but enhanced by Hadronization

- Showing $\sum_{i=1}^{N_{ch}} p_T^{ch}$, same for N_{ch}
- MPI (and Hadronization) introduce additional activity
- Some trend in y* already visible at parton shower level but enhanced by Hadronization and MPI models

Conclusions

- Something surprising and special is happening in the soft (NP) region in $Z{\rm +jet}$ production
 - Shows some perturbative dependence
 - Originates in the PS but gets enhanced in MPI modelling

Consistent trends between different models, but some differences

- There exists no directly sensitive data
- \rightarrow Measure dependency of Z+jet production on y^* in the soft regime

Backup

Derivation of NP-Correction Factors

UE Analysis Object Definitions and Selections

- Jet
 - Anti- k_{T} with R=0.4
 - $|\eta| < 2.4$
 - $p_T^{\text{Jet1}} > 25 \,\text{GeV}$
 - $\Delta R(\mu, \text{jet}) = \sqrt{\left(\phi_{\text{jet}} \phi_{\mu}\right)^2 + \left(\eta_{\text{jet}} \eta_{\mu}\right)^2} > 0.3$
- Dimuon (Z)
 - $p_T^{\mu} > 25$
 - $|\eta_{\mu}| < 2.4$
 - $m_Z 20 \text{ GeV} < m_{\mu^+\mu^-} < m_Z + 20 \text{ GeV}$
 - $5 \, {\rm GeV} < p_T^Z < 100 \, {\rm GeV}$

- Charged Final State Particles
 - $|\eta| < 2.4$
 - *p*_T > 500 MeV