

Universidá d'Uviéu

Associated production of tX and tt+X, including their EFT interpretation in CMS

Jorge Ayllón Torresano on behalf of the CMS Collaboration

09/04/2025

SM@LHC 2025

EFTs interpretation covered in Maryam's talk about EFTs in the fermionic sector!

In this talk...

Differential ttW with full Run 2

CMS-PAS-TOP-24-003

Mind the gap! Top quark pairs with W bosons continue to defy the latest predictions

ttW differential: motivation

This is the first differential measurement of ttW in CMS.

Tensions seen with SM even at NNLO in the previous inclusive measurements.

For this measurement: signal is modelled using aMC@NLO with multijet merging up to 1 jet. Compared to state-of-the-art predictions at particle level.

Presented in this talk:

ATLAS

NLO+NNLL

Sherpa FxFx

NNI O

400

 $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$

500

- Differential cross section
- Leptonic charge asymmetry \succ

ATLAS - this result CMS (JHEP 07 (2023) 219)

Two regions of measurement: two leptons with the same electric charge (2lss), and three leptons (3l) with two different approaches for 2lss.

Two regions of measurement: two leptons with the same electric charge (2155), and three leptons (31) with two different approaches for 2155.

MVA method

- Uses a looser selection on leptons
- Purity of signal (or S/B) achieved with an MVA

Counting method

- Uses a tighter selection on leptons
- Larger S/B
- Direct unfolding to observables

Used in the <u>2lss</u> measurement

Used in the 3l measurements (and in 2lss as complementary)

In both: various validation and control regions to study the backgrounds.

The differential measurement is split in two regions with two strategies:

To get the result, these variables are unfolded using maximum likelihood (ML) fits.

ttW differential: differential results

Results compatible within uncertainties and in slight tension with SM predictions.

3 channel

ttW differential: lepton charge asymmetry

CMS-PAS-TOP-23-002

Shiny top quarks: what happens when top quarks emit light?

ttγ: motivation

Several features to study from the process:

- Direct access to the tγ coupling (serves as a precision test of the SM)
- Sensitive to new physics (EFTs)
- Measurement of some top properties

Presented in the talk:

- Inclusive cross section with full Run 2
- Differential cross section
 - Top quark charge asymmetry
- Ratio of xsec between ttγ and tt (in backup, details in the PAS)

ttγ: signal region definition

Two sources of ttγ

- Production: γ generated from the top or ISR
- Decay: γ generated in the final states

Both sources simulated separately at NLO (production) and LO (decay) using aMC@NLO.

 \succ

tWγ overlap with ttγ removed with DR1 (diagram removal) method.

ttγ inclusive: results

Fiducial cross section measured implementing a ML fit:

Production + decay:

$$\sigma_{t\bar{t}\gamma} = 134 \pm 7 \ (syst) \pm 3 \ (stat) \ fb$$

In agreement with prediction:

$$\sigma^{sim}_{t\bar{t}\gamma} = 123 \pm 16 \ fb$$

$$\begin{array}{l} \text{Only production:} \\ \sigma^{prod}_{t\bar{t}\gamma} = 54 \pm 4 \ (syst) \pm 2 \ (stat) \ fb \\ \text{In agreement} \\ \text{with prediction:} \ \sigma^{prod,sim}_{t\bar{t}\gamma} = 55 \pm 5 \ fb \end{array}$$

ttγ differential: results

General good agreement with the SM in the nominal simulation.

ttγ differential: top quark charge assymmetry

16

The top

tX measurements

Inclusive and differential tW with Run 3 (2022)

<u>JHEP 01 (2025) 107</u>

tW measurement: introduction

First measurement in Run 3 of a single top process.

Similar sensitivity to the full Run 2 result (JHEP 07 (2023) 046).

Main challenge is to separate the signal from dominant and irreducible tt background.

Diagram removal and subtraction procedures to avoid double counting.

tW inclusive: strategy

Selected these 3 regions in OS $e\mu$ to get the cross section:

≻ 1j1b

≻ 2j1b

≻ 2j2b

Also, two multiclassifiers to separate signal from background in:

- 1j1b: Random Forest to discriminate DY vs tt vs tW
- 2j1b: Random Forest including tt semilep. vs tt vs tW

tW inclusive: results

The inclusive cross section is measured performing a ML fit in:

- Random Forest in 1j1b
- Random Forest in 2j1b
- Subleading lepton pt in 2j2b

tW inclusive: results

tW differential: results

To measure the differential cross section only the 1j1b region is used.

Summary

- Several new low cross section measurements with full Run 2 (specially differential)
- In general, good agreement with the SM in the presented measurements
- * ttW keeps having tensions with the predictions \rightarrow more study in Run 3
- Many of these analyses have EFT interpretations that you can see in Maryam's talk.
- First single top measurement with Run 3 with very good performance.

Many more analyses on their way with Run 3 data!!

Universidá d'Uviéu

Thank you!

jorge.ayllon.torresano@cern.ch

IĆTEA

Backup

Why measuring the top quark?

- ★ Very useful to test the standard model (SM) very precisely:
 - Proton components, CKM matrix, cross sections...
- ★ Present in BSM processes.
 - Dark matter, EFTs, exotic processes...
- ★ Also present as background in lots of SM processes:
 - Diboson, associated Higgs production...

- ★ Full Run 2 (138 fb⁻¹) allows to observe the low cross section processes.
- ★ Beginning of Run 3 (35 fb⁻¹) also allows to get results at a new energy regime.

The differential measurement is split in two regions with two strategies:

2 Exactly 3 leptons One pair with opposite sign (OS) \succ pT > (25, 15, 15) GeV \succ mll > 30 GeV \succ Veto to OSSF mll in the Z peak At least 2 jets (1 b-tagged) \succ

ttW differential: backgrounds

Several backgrounds to deal with:

- Non-prompt leptons
- Charge miss Id leptons
- Conversions (ttγ, tγ and Zγ)
- Irreducible backgrounds (ttX, WZ, ZZ)

ttW differential: data-driven estimations

Non-prompt estimation Using a fake factor method:

Get the fake rate in a sideband

Extrapolate to the signal region

Charge miss Id. estimation Selecting events with the SR selection but OS of DY + SS events in the Z peak

ttW differential: lepton charge asymmetry

Categorization:

ttγ: signal region definition

Two sources of ttγ Production: γ generated in ISR

Decay: γ generated in FSR

Event selection:

- > At least 2 OS leptons
- Exactly 1 photon
- Lepton pT > (25, 15) GeV
- > mll > 40 GeV
- Veto to mll and mllγ in the Z peak (+- 15 GeV)
- At least 2 jets (1 b-tagged)
- Reconstruction of the top quark

ttγ: backgrounds

Processes split in genuine photons and non-prompt photons.

Genuine photons: estimated with MC samples \rightarrow main background is Zy

Non-prompt photons: estimated with a data-driven method

33

ttγ: non-prompt estimation

Using ABCD method to compute the contribution

Sideband regions defined as a function of:

- PF charged isolation
- Width of the electromagnetic shower

nonprompt
$$\gamma$$
 contribution = $\sum_{i,j} (\text{Data}_B^{ij} \times \text{FR}^{ij} \times k_{\text{MC}}^{ij}) - \sum_{i,j} (\text{genuine MC}_B^{ij} \times \text{FR}^{ij} \times k_{\text{MC}}^{ij})$

ttγ inclusive: fiducial selection

Selections	Lepton	Photon	Jet	B jet
$p_{\rm T}$ (GeV)	15	20	30	30
$ \eta $	2.5	2.5	2.4	2.4
Multiplicity	≥ 2	1	≥ 2	≥ 1
Other requirements	$m(\ell\ell) > 30$	$\Delta R(\gamma,\ell) > 0.4$	$\Delta R(\gamma / \ell, \text{jet}) > 0.4$	-
Origin	prompt	not from hadrons	-	-

ttγ differential: systematic uncertainties

	Source	Corr. (period)	Corr. (proces	s)
	Integrated luminosity	\sim	\checkmark	
	Pileup reweighting	\checkmark	\checkmark	
tal	Electron reconstruction and identification	\checkmark	\checkmark	
Jen	Muon reconstruction and identification	\checkmark	\checkmark	
rin	Photon reconstruction and identification	\sim	\checkmark	Main avet
be	Nonprompt photon estimation	×		Main Syst.
Ĕ	Trigger efficiencies	×	\checkmark	
	L1 prefiring	\checkmark	\checkmark	
	JES	\sim	\checkmark	
	JER	×	\checkmark	
	b tagging	\sim	\checkmark	
	$\mu_{\rm R}$ scale	\checkmark	\sim	
	$\mu_{\rm F}$ scale	\checkmark	\sim	
	PDF	\checkmark	\checkmark	
al	PS scales: ISR	\checkmark	×	
tic	PS scales: FSR	\checkmark	×	
ore	ME-PS matching (h_{damp})	\checkmark	—	
he	NNLO QCD reweighting	\checkmark		
L	$t\bar{t}$ cross section	\checkmark		
	tW γ cross section	\checkmark		
	$Z\gamma$ +jets cross section	\checkmark		
	t $\overline{t}\gamma$ production/decay fraction	\checkmark	—	
	$Z\gamma$ +jets cross section depending on jet multiplicity	\checkmark		

36

tty differential: tty and tt ratio

Overview of the EFTs interpretation

ttX measurements can be interpreted in the SM-EFT framework for (mainly) electroweak coefficients.

tty \rightarrow previous result (<u>JHEP 05 (2022) 091</u>) with Run 2 studied electroweak dipole moments characterized by the tZ(y) interaction vertex.

Recent results:

- Studying ttZ and tZq and odd coefficients from tZ coupling, <u>CMS-PAS-TOP-24-012</u> obtained new limits in full Run 2 + 2022.
- Also <u>CMS-PAS-TOP-23-009</u> studied coefficients from ttZ + WZ + ZZ in full Run 2 getting limits for 10 flavour related coefficients.

More details about these in Maryam's talk about EFTs in the fermionic sector!

tW measurement: strategy

Event selection:

- At least two leptons
- Lepton pT > 25 GeV
- ➤ mll > 20 GeV
- > Only $e\mu$ events with OS

Separation in various regions as a function of the number of jets and b-tagged jets.

tW: particle level and fiducial regions

	Object	$p_{\rm T}$ (GeV)	$ \eta $	
Particle level selection	Muons	>20	<2.4	
	Electrons	>20	<2.4, excluding [1.444–1.566]	
	Jets	>30	$<\!2.4$	
	Loose jets	[20, 30]	$<\!\!2.4$	
	Observable		Requirement	
Fiducial selection	Number of le	eptons	≥ 2	
	Leading lepto	on $p_{\rm T}$	>25 GeV	
	Invariant ma	ss of all dilep [.]	ton pairs >20 GeV	
	Number of jets		1	
	Number of loose jets		0	
	Number of b jets		1	

tW inclusive: uncertainties impact

tW differential: strategy

To measure the differential cross section only the 1j1b region is used

Event selection (fiducial) + veto to events with low energy (20-30 GeV)

Main keys from the analysis:

- ★ The signal extraction is performed by background subtraction
- ★ Fiducial space to full space with TUnfold
- Several schemes to remove the interference between tW and tt are tested

