Energy Correlators and Precision top quark mass **Aditya Pathak** SM@LHC, Durham, April 2025

Based on: Phys.Rev.D 107 (2023): J. Holguin, I. Moult, AP, M. Procura 2311.02157: J. Holguin, I. Moult, AP, M. Procura, R. Schöfbeck, D. Schwarz [submitted to PRL] 2407.12900: J. Holguin, I. Moult, AP, M. Procura, R. Schöfbeck, D. Schwarz [accepted by JHEP]

- Theory challenges with current top mass measurements
- Energy Correlators for precision jet substructure
- A new proposal for top mass using EECs •
- Demonstrating robustness and experimental feasibility

Outline

Theory challenges with current top mass measurements

- Energy Correlators for precision jet substructure
- A new proposal for top mass using EECs •
- Demonstrating robustness and experimental feasibility

Outline

- The masses of the Higgs, W and Z bosons known to < 0.2% precision
- The top mass (~172 GeV) is not as precise as you'd like it to be:
 - δM_t (~ 1 GeV) contributes the largest uncertainty $\delta M_W^{m_t} = 4 \text{ MeV}$
 - A large 20 GeV uncertainty in the indirect M_H from δM_T
 - Crucial for EW Vacuum stability analysis

Andreassen, Frost, Schwartz 2014

4

The current status of collider QCD predictions

Use Monte Carlo simulations for strong interactions in the final state.

- Extremely versatile
- But not precise *enough* for something so sensitive as the top quark mass
- Doesn't include soft gluon, Coulomb resummation

Hard scattering

Proton structure

Existing top mass determinations

• A number of complementary techniques

• Excellent summary: Review of top quark mass measurements in CMS, Phys.Rept. 1115 (2025) 116-218

Top Mass from Total Cross Section

- Theoretically robust as it primarily depends on PDF and hard scattering
- Yields measurement in well defined \overline{MS} scheme.
- Weak sensitivity to the top mass.
- Main sources of uncertainty:
- Integrated luminosity

Pole Mass Measurements

Gain more sensitivity by considering normalized multidifferential distributions: $m_{t\bar{t}}, y_{t\bar{t}}$

• The highest sensitivity in the $m_{t\bar{t}} \in (340, 360)$ GeV region. Coulomb effects on quasi-bound $t\bar{t}$ state become important

- Very hard to compute for

differential distributions

Pole Mass Measurements

Differential tt 13 TeV, NLO + 3D fit ($m_t^{\text{pole}}, \alpha_s, \text{PDF}$)

- [See Maria Garzelli's talk]

Ю

mt [Gev]

Gain more sensitivity by considering normalized multidifferential distributions: $m_{t\bar{t}}, y_{t\bar{t}}$

• The highest sensitivity in the $m_{t\bar{t}} \in (340, 360)$ GeV region. Coulomb effects on quasi-bound $t\bar{t}$ state become important

- Very hard to compute for differential distributions

Direct Measurements

Boosted Jet Mass

 High-order analytical resummation using SCET and HQET of jet mass in the boosted region.

Bachu, Hoang, Mateu, AP, Stewart Phys.Rev.D 104 (2021)

- Analytical, model-independent treatment of leading hadronization effects
 - Calibrate m_t^{MC} and hadronization models

Dehnadi, Hoang, Jin, Mateu JHEP 12 (2023) 065 Hoang, Jin, Plätzer, Samitz JHEP 10 (2018) 200 Ferdinand, Lee, AP Phys.Rev.D 108 (2023) 11, L111501

- Direct extraction using soft drop jet mass Hoang, Mantry, AP, Stewart Phys.Rev.D 100 (2019) 7, 074021

$$\frac{1}{\sigma_0} \frac{d\sigma}{d\tau_2} = m_t Q^2 H_{evol}^{(5,6)}(Q, m_t, \varrho, \mu; \mu_H, \mu_m) \\
\times \int d\ell \, d\hat{s} \, U_B^{(5)}(\hat{s}_\tau - \varrho\ell - \hat{s}, \mu, \mu_B) \, J_{B,\tau_2}^{(5)}(\hat{s}, \Gamma_t, \delta m, \mu_B) \\
\times \int d\ell' dk \, U_S^{(5)}(\ell - \ell', \mu, \mu_S) \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) F(k - \ell', \mu, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) + \hat{S}_{\tau_2}^{(5)}(\ell'$$

Hadron-level predictions for boosted jet mass

172171 172 173174171 173 $m_t^{\rm MC}[{\rm GeV}]$ $m_t^{\rm MC}[{\rm GeV}]$ For Pythia v8.305: $m_t^{\rm MC} - m_t^{\rm pole} = 0.35 \pm 0.30 \,{\rm GeV}$ $m_t^{\text{MC}} - m_t^{\text{MSR}} (1 \text{ GeV}) = 0.03 \pm 0.21 \text{ GeV}$

- - UE and initial state MPI
 - Non-universal power corrections (CR)
 - 14

Problems with top mass measurements **Current Paradigm:**

 Compromise between theoretical control and mass sensitivity.

$$\Delta m_t^{\overline{\mathrm{MS}}} \sim \pm 2 \,\mathrm{GeV}$$

$$\Delta m_t^{\text{pole}} = \pm 0.7 \,\text{GeV} \\ + \mathcal{O}(1 \,\text{GeV}) \text{ (soft physics)}$$

$$\Delta m_t^{\rm MC} = \pm 0.3 \, {\rm GeV} \\ + \mathcal{O}(1 \, {\rm GeV}) \\ \text{(Modeling hadronization)}$$

The Standard Candle Approach

The over-reliance of current approaches on MC simulations presents a bottleneck that limits precision.

The Standard Candle Approach

The over-reliance of current approaches on MC simulations presents a bottleneck that limits precision.

Proposal: A unique Energy Correlator-based "Standard-Candle" approach:

The Standard Candle Approach

The over-reliance of current approaches on MC simulations presents a bottleneck that limits precision.

Theory challenges with current top mass measurements

Energy Correlators for precision jet substructure

- A new proposal for top mass using EECs •

Outline

Demonstrating robustness and experimental feasibility

- First dedicated workshop on EECs at Mainz this year:
 - expansion, bootstrap, connections with celestial holography, ...

jet substructure, precision measurements, heavy ion, nuclear structure, light-ray operator product

- One of the very first event shapes and a QCD correlation observable. Basham et al. 1978
- For $e^+e^- \rightarrow \gamma^*/Z \rightarrow q\bar{q} + X$:

$$\frac{\mathrm{d}\Sigma_{\mathrm{EEC}}}{\mathrm{d}\cos\chi} = \sum_{ij} \int \frac{E_i E_j}{Q^2} \delta\left(\vec{n}_i \cdot \vec{n}_j - \cos\chi\right) \mathrm{d}\sigma$$

- Each event contributes to multiple bins, with the final distribution being an ensemble average over all events.
- In fixed order expansion:

 $d\Sigma_{EEC} = \delta(1 + \cos \chi) + \alpha_s d\Sigma^{(LO)} + \alpha_s^2 d\Sigma^{(NLO)} + \alpha_s^3 d\Sigma^{(NNLO)} + \dots$

- Two limits exhibiting a rich all-orders structure:
 - The Collinear limit: $\chi \to 0$
 - The back-to-back limit: $\chi \rightarrow \pi$

• In the collinear limit we find that the fixed order expansion breaks down for $z \rightarrow 0$:

$$\lim_{z\to 0} \mathrm{d}\Sigma_{\mathrm{EEC}} \sim \frac{\alpha_s}{z} \left(1 + \alpha_s \ln z + (\alpha_s \ln z)^2 + \dots\right),$$

In QCD a time-like factorization formula can be derived to resum large logs in the collinear limit:

$$\Sigma_{\text{EEC}}\left(z,\ln\frac{Q^2}{\mu^2},\mu\right) = \int_0^1 \mathrm{d}x \, x^2 \, \overrightarrow{J}_{\text{EEC}}\left(\ln\frac{x^2 z Q^2}{\mu^2},\mu\right) \cdot \overrightarrow{J}_{\text{EEC}}\left(1-\frac{y^2 z Q^2}{\mu^2},\mu\right)$$

• For *pp* collisions we can measure the EEC on particles inside jets

- Use
$$\Delta R_{ij} = \sqrt{\Delta \eta_{ij}^2 + \Delta \phi_{ij}^2}$$

-
$$zQ^2 \rightarrow (p_T \Delta R)^2$$

A model-independent treatment of hadronization

- EECs enable a field-theoretic analysis of hadronization effects.
- A *field-theoretic* statement about the leading nonperturbative correction:

$$\frac{1}{\sigma} \frac{d\sigma^{[N]}}{dx_L} = \frac{1}{\sigma} \frac{d\hat{\sigma}^{[N]}}{dx_L} + \frac{N}{2^N} \frac{\overline{\Omega}_{1q}}{Q(x_L(1-x_L))^{3/2}}$$

- This Ω_{1q} is universal with dijet event shapes in e^+e^- collisions.
- Enables a model-independent assessment of hadronization effects in α_{s} measurement

Lee, AP, Stewart, Sun arXiv:2405.19396 [Accepted by PRL]

0.6

size of hadronization in the collinear region!

Also see Chen, Monni, Xu, Zhu 2046.06668

The back-to-back region of the EEC

- The shape of the Z boson p_T distribution has a rich all-orders structure for low p_T values: $\frac{1}{p_T^2} \alpha_s^n \log^{2n-1} \left(\frac{p_T^2}{Q^2} \right), \dots$
- The q_T -factorization formula resums these logarithms:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}q_T} = \sum_{i,j} H_{\mathrm{DY}}^{ij}(Q,\mu) \int \frac{\mathrm{d}\boldsymbol{b}_T}{(2\pi)^2} e^{-\mathrm{i}\boldsymbol{b}_T \cdot \boldsymbol{q}_T} \mathscr{B}_{i/N_1}(x_1,b_\perp,\mu)$$

- The same mechanism describes the structure of the EEC in the backto-back region: $\frac{1}{1-z} \alpha_s^n \log^{2n-1}(1-z)$
- The b2b factorization has the same soft function:

$$\frac{\mathrm{d}\Sigma_{\mathrm{EEC}}}{\mathrm{d}z} = \frac{1}{4} \int \mathrm{d}\boldsymbol{q}_T \, H_{e^+e^-}(Q,\mu) \int \frac{\mathrm{d}\boldsymbol{b}_T}{(2\pi)^2} \, e^{-\mathrm{i}\boldsymbol{b}_T \cdot \boldsymbol{q}_T} \, \delta\left(1 - z - \frac{q_T^2}{Q^2}\right) J_{\mathrm{H}}$$

• The most precisely known event shape: N⁴LL accuracy

Yu-Chen (Janice) Chen

Excellent agreement with e^+e^- data

- **First** highly-differential measurement of 0 EEC(z) in e^+e^- with ALEPH from collinear to back-to-back limit with high statistical precision
- Excellent agreement between archived 0 data and theory calculation
- Directly sensitive to theory parameters Ο (ex: α_{s})
- Constraining non-perturbative 0 parameters in lattice QCD
- Stay tuned! 0

Is the e^+e^- example even relevant for the LHC?

At the LHC we can measure energy correlations on (fat) jets containing boosted boson/top quark decays.

Is the e^+e^- example even relevant for the LHC?

The correlations in the e^+e^- with Z produced at rest is preserved in boosted electroweak Z decays!

Is the e^+e^- example even relevant for the LHC?

The correlations in the e^+e^- with Z produced at rest is preserved in boosted electroweak Z decays!

- The $\chi \to 0$ collinear limit probes the same quark/gluon collinear fragmentation dynamics

• The back-to-back region now appears as a peak corresponding to the opening angle of the boosted Z decay.

- Theory challenges with current top mass measurements
- Energy Correlators for precision jet substructure
- A new proposal for top mass using EECs
- Demonstrating robustness and experimental feasibility

Outline

Threshold limit for the top: At leading order the top quark exhibits a near planar decay:

The three-point correlator picks out the characteristic three-body top quark decay

Measurement function ($\zeta_{ij} = \Delta R_{ij}^2$):

$$\widehat{\mathscr{M}}^{(n)}(\zeta_{12}, \zeta_{23}, \zeta_{31}) = \sum_{ijk \in jet} \frac{p_{T,i}^n p_{T,j}^n p_{T,k}^n}{p_{T,jet}^{3n}} \delta(\zeta_{12} - p_{T,jet}^{3n})$$

The correlator is sensitive to angles between the decay products. At LO:

• Top rest frame : $\tilde{\zeta}_t = \tilde{\zeta}_{12} + \tilde{\zeta}_{23} + \tilde{\zeta}_{31} \in [2, 2.25]$,

Lab frame (boosted): $\zeta_t \equiv \sum_{i < j} \zeta_{ij} \approx 3 \left(\frac{m_t}{p_T}\right)^2 \sum_{i < j} \tilde{\zeta}_{ij}$,

 $\zeta_{ii} \delta(\zeta_{23} - \zeta_{ik}) \delta(\zeta_{31} - \zeta_{ik})$

A feature at the characteristic angle $\langle \zeta_t \rangle \approx 3m_t^2/p_T^2$.

Excellent top mass sensitivity and robustness to hadronization

- The imprint of the top quark is extremely sensitive to the top quark mass
- - This is in a stark contrast to the jet mass with $\sim 1 \, \text{GeV}$ shifts in the peak.

Holguin, Moult, AP, Procura 2022

• Nonperturbative effects have a very small effect on the peak, $\Delta m_t^{\rm hadr.} \approx 150 \pm 0.5 \, {
m MeV}$

But the jet p_T spoils the elegance ...

The need for a clean jet p_T measurement however spoils the theoretical elegance of this approach:

Problems:

- Challenging to unfold the jet p_T to $\sim 5 \,\text{GeV}$ precision!
- top mass from $\zeta_t \sim m_t^2 / p_{T,iet}^2$.

Holguin, Moult, AP, Procura 2022

• Shifts due to hadronization and MPI in the jet p_T spectrum induce large $\sim 1 \, \text{GeV}$ shifts in the extracted

The Standard Candle approach in nutshell

33

- Remove the shared energy scale
- Calibrate $M_{\rm top}$ using the W mass : $m_W = 80.377 \pm 0.012 \,{\rm GeV}$
- Exploit the W inside the top jets as a standard candle

High degree of correlation of the two imprints

The ratio of top and W peaks are more correlated than you'd naively think \dots

- The top quark and the W share a common boost defined by $p_{T,iet}$
- While the orientation of the W is largely uncorrelated with top boost axis in the rest frame, the EEEC preferentially picks out the Ws aligned with the top in the lab frame.

34

- Theory challenges with current top mass measurements
- Energy Correlators for precision jet substructure
- A new proposal for top mass using EECs •
- Demonstrating robustness and experimental feasibility

Outline

The task ahead

Isolate which of the sub-processes matter for the Standard Candle approach

DGLAP evolution Hard scattering 00 Proton structure Soft physics

The checklist

For a robust experimental strategy for precision top mass we need to ensure

- 1. The distribution is resilient to experimental systematics,
- 2. Robust against modeling of hadronization and UE
- 3. All non-universal and power suppressed effects have a negligible impact
- 4. The key effects will be perturbatively calculable.

Production mechanism:

- PDF uncertainty
- Hard scattering corrections

Jet substructure:

- Jet radius dependence
- Hadronization effects
- Impact of underlying event
- Wide angle soft physics
- Perturbative uncertainty

Experimental feasibility:

- Statistical sensitivity
- Jet energy scale
- Constituent energy scale
- Tracks-based measurement
- Heavy flavor dependence

Experimental systemati

Calibrating the top mass

• The strategy for now is to simply take the ratio of the peaks of the $T(\zeta)$ and the $W(\zeta)$ distributions. The resulting ratio is proportional to top mass:

$$\frac{\mathrm{d}T}{\mathrm{d}\zeta}\bigg|_{\zeta=\zeta_t} = 0, \qquad \frac{\mathrm{d}W}{\mathrm{d}\zeta}\bigg|_{\zeta=\zeta_W} = 0$$

In the large boost limit,

$$m_t = m_W \left[C(\alpha_s, R) \sqrt{\zeta_t / \zeta_W} + \mathcal{O}\left(\frac{m_W}{\langle p_{T, \text{jet}} \rangle}, \frac{m_W}{\langle p_T \rangle}\right) \right]$$

- The constant C is perturbatively calculable and R-dependent
- For now extract this from parton showers by averaging over $p_T \in [400, 600]$ GeV.
- Primary error from varying the fit polynomial degree.

r,jet

38

Hadronization effects

All the showers exhibit a cancellation of hadronization effects in the $p_{T,iet}$. Negligible shift ≤ 200 MeV

Holguin, Moult, AP, Procura, Schöfbeck, Schwarz 2024

Production mechanism:

- PDF uncertainty
- Hard scattering corrections

Jet substructure:

- Jet radius dependence
- Hadronization effects
- Impact of underlying event
- Wide angle soft physics
- Perturbative uncertainty

- Statistical sensitivity
- Jet energy scale
- Constituent energy scale
- Tracks-based measurement
- Heavy flavor dependence

Hadronization effects

Negligible impact of *b* hadron fragmentation modeling:

Holguin, Moult, AP, Procura, Schöfbeck, Schwarz 2024

		S. Instal		and the second sec	
for the second	~~~~	SW			
	b frag	gment	ation		

Production mechanism:

- PDF uncertainty
- Hard scattering corrections

Jet substructure:

- Jet radius dependence
- Hadronization effects
- Impact of underlying event
- Wide angle soft physics
- Perturbative uncertainty

- Statistical sensitivity
- Jet energy scale
- Constituent energy scale
- Tracks-based measurement
- Heavy flavor dependence

Effect of contamination

We work with standard CMS CP5 tune and consider UE tune variation and find negligible impact

Holguin, Moult, AP, Procura, Schöfbeck, Schwarz 2024

Montamination Kore	

Production mechanism:

- PDF uncertainty
- Hard scattering corrections

Jet substructure:

- Jet radius dependence
- Hadronization effects
- Impact of underlying event
- Wide angle soft physics
- Perturbative uncertainty

- Statistical sensitivity
- Jet energy scale
- Constituent energy scale
- Tracks-based measurement
- Heavy flavor dependence

PDF variations

Variations in PDFs lead to significant shifts and induce substantial uncertainties in the $p_{T,jet}$ distribution but the ratio of the peaks is extremely robust (negligible shift):

Holguin, Moult, AP, Procura, Schöfbeck, Schwarz 2023, 2024

Production mechanism:

- PDF uncertainty
- Hard scattering corrections

Jet substructure:

- Jet radius dependence
- Hadronization effects
- Impact of underlying event
- Wide angle soft physics
- Perturbative uncertainty

- Statistical sensitivity
- Jet energy scale
- Constituent energy scale
- Tracks-based measurement
- Heavy flavor dependence

Hard scattering corrections

Probe variations in the physics at the hard scale via scale variation in the ISR: Negligible impact.

Holguin, Moult, AP, Procura, Schöfbeck, Schwarz 2024

Production mechanism:

- PDF uncertainty
- Hard scattering corrections

Jet substructure:

- Jet radius dependence
- Hadronization effects
- Impact of underlying event
- Wide angle soft physics
- Perturbative uncertainty

- Statistical sensitivity
- Jet energy scale
- Constituent energy scale
- Tracks-based measurement
- Heavy flavor dependence

Hard scattering corrections

Probe variations in the physics at the hard scale via NLO matching to $t\bar{t} + j$ process: Negligible impact.

Holguin, Moult, AP, Procura, Schöfbeck, Schwarz 2024

Production mechanism:

- PDF uncertainty
- Hard scattering corrections

Jet substructure:

- Jet radius dependence
- Hadronization effects
- Impact of underlying event
- Wide angle soft physics
- Perturbative uncertainty

- Statistical sensitivity
- Jet energy scale
- Constituent energy scale
- Tracks-based measurement
- Heavy flavor dependence

Wide angle soft physics

Color reconnection models probe the soft wide angle effects at the nonperturbative scale: Negligible impact

Holguin, Moult, AP, Procura, Schöfbeck, Schwarz 2024

Production mechanism:

- PDF uncertainty
- Hard scattering corrections

Jet substructure:

- Jet radius dependence
- Hadronization effects
- Impact of underlying event
- Wide angle soft physics
- Perturbative uncertainty

- Statistical sensitivity
- Jet energy scale
- Constituent energy scale
- Tracks-based measurement
- Heavy flavor dependence

Shower Uncertainty

Shower uncertainty results from LL showers + LO description of the top decay: Negligible impact of FSR scale variation

Holguin, Moult, AP, Procura, Schöfbeck, Schwarz 2024

Production mechanism:

- PDF uncertainty
- Hard scattering corrections

Jet substructure:

- Jet radius dependence
- Hadronization effects
- Impact of underlying event
- Wide angle soft physics
- Perturbative uncertainty

- Statistical sensitivity
- Jet energy scale
- Constituent energy scale
- Tracks-based measurement
- Heavy flavor dependence

Shower Uncertainty

Shower uncertainty results from LL showers + LO description of the top decay: Expect significant improvement with the top decay description at NLO + Sudakov resummation in the peak

Holguin, Moult, AP, Procura, Schöfbeck, Schwarz 2024

Production mechanism:

- PDF uncertainty
- Hard scattering corrections

Jet substructure:

- Jet radius dependence
- Hadronization effects
- Impact of underlying event
- Wide angle soft physics
- Perturbative uncertainty

- Statistical sensitivity
- Jet energy scale
- Constituent energy scale
- Tracks-based measurement
- Heavy flavor dependence

Differences between shc

Compare different showers without normalizing via C

Holguin, Moult, AP, Procura, Schöfbeck, Schwarz 2023

 $p_{T,\,{
m jet}}\,[\,{
m GeV}]$

- Difference between Herwig A.O. and dipole showers due to different approximations of NLO top decay.
- Herwig angular-ordered shower differs by 3%: A proxy for LL uncertainty.

DWE	ers
Gen [:]	
[18NNLO	
SHT20an31o NPDF40	
level	

Production mechanism:

- PDF uncertainty
- Hard scattering corrections

Jet substructure:

- Jet radius dependence
- Hadronization effects
- Impact of underlying event
- Wide angle soft physics
- Perturbative uncertainty

- Statistical sensitivity
- Jet energy scale
- Constituent energy scale
- Tracks-based measurement
- Heavy flavor dependence

Jet radius dependence

Varying the jet radius impacts the sampled top and W boosts via the $p_{T,iet}$, but it is purely perturbative: Shift from had/UE is ~ 200 MeV effect!

Holguin, Moult, AP, Procura, Schöfbeck, Schwarz 2024

Jet-based measurement

Production mechanism:

- PDF uncertainty
- Hard scattering corrections

Jet substructure:

- Jet radius dependence
- Hadronization effects
- Impact of underlying event
- Wide angle soft physics
- Perturbative uncertainty

- Statistical sensitivity
- Jet energy scale
- Constituent energy scale
- Tracks-based measurement
- Heavy flavor dependence

Jet radius dependence

Varying the jet radius impacts the sampled top and W boosts via the $p_{T,iet}$, but it is purely perturbative: Shift from had/UE is ~ 200 MeV effect!

Holguin, Moult, AP, Procura, Schöfbeck, Schwarz 2024

Jet-based measurement

Hadronic ■ Had+MPI

Production mechanism:

- PDF uncertainty
- Hard scattering corrections

Jet substructure:

- Jet radius dependence
- Hadronization effects
- Impact of underlying event
- Wide angle soft physics
- Perturbative uncertainty

Experimental feasibility:

- Statistical sensitivity
- Jet energy scale
- Constituent energy scale
- Tracks-based measurement
- Heavy flavor dependence

50

- Theory challenges with current top mass measurements
- Energy Correlators for precision jet substructure
- A new proposal for top mass using EECs •
- Demonstrating robustness and experimental feasibility

Outline

Statistical sensitivity

Crucially, the measurement is statistically feasible at the LHC

Holguin, Moult, AP, Procura, Schöfbeck, Schwarz 2023

Experimental systematics

Production mechanism:

- PDF uncertainty
- Hard scattering corrections

Jet substructure:

- Jet radius dependence
- Hadronization effects
- Impact of underlying event
- Wide angle soft physics lacksquare
- Perturbative uncertainty

- Statistical sensitivity
- Jet energy scale
- Constituent energy scale
- Tracks-based measurement
- Heavy flavor dependence

Jet energy scale

We model the CMS jet energy scale uncertainty and vary the $p_{T,jet}$

Holguin, Moult, AP, Procura, Schöfbeck, Schwarz 2024

Experimental systematics

Production mechanism:

- PDF uncertainty
- Hard scattering corrections

Jet substructure:

- Jet radius dependence
- Hadronization effects
- Impact of underlying event
- Wide angle soft physics
- Perturbative uncertainty

- Statistical sensitivity
- Jet energy scale
- Constituent energy scale
- Tracks-based measurement
- Heavy flavor dependence

Jet energy scale

We model the CMS jet energy scale uncertainty and vary the $p_{T,iet}$: Negligible impact

Holguin, Moult, AP, Procura, Schöfbeck, Schwarz 2024

Experimental systematics

Production mechanism:

- PDF uncertainty
- Hard scattering corrections

Jet substructure:

- Jet radius dependence
- Hadronization effects
- Impact of underlying event
- Wide angle soft physics
- Perturbative uncertainty

- Statistical sensitivity
- Jet energy scale
- Constituent energy scale
- Tracks-based measurement
- Heavy flavor dependence

Constituent Energy Scale

Study the effect of varying the constituent momenta: 1% for charged, 3% for photons and 5% for neutrals: Negligible impact

Holguin, Moult, AP, Procura, Schöfbeck, Schwarz 2024

Experimental systematics

Production mechanism:

- PDF uncertainty
- Hard scattering corrections

Jet substructure:

- Jet radius dependence
- Hadronization effects
- Impact of underlying event
- Wide angle soft physics
- Perturbative uncertainty

- Statistical sensitivity
- Jet energy scale
- Constituent energy scale
- Tracks-based measurement
- Heavy flavor dependence

Constituent Energy Scale

Study the effect of varying the constituent momenta: 1% for charged, 3% for photons and 5% for neutrals: Negligible impact

Holguin, Moult, AP, Procura, Schöfbeck, Schwarz 2024

Experimental systematics

Production mechanism:

- PDF uncertainty
- Hard scattering corrections

Jet substructure:

- Jet radius dependence
- Hadronization effects
- Impact of underlying event
- Wide angle soft physics
- Perturbative uncertainty

- Statistical sensitivity
- Jet energy scale
- Constituent energy scale
- Tracks-based measurement
- Heavy flavor dependence

Constituent Energy Scale

Study the effect of varying the constituent momenta: 1% for charged, 3% for photons and 5% for neutrals: Negligible impact

Holguin, Moult, AP, Procura, Schöfbeck, Schwarz 2024

Experimental systematics

57

Production mechanism:

- PDF uncertainty
- Hard scattering corrections

Jet substructure:

- Jet radius dependence
- Hadronization effects
- Impact of underlying event
- Wide angle soft physics
- Perturbative uncertainty

- Statistical sensitivity
- Jet energy scale
- Constituent energy scale
- Tracks-based measurement
- Heavy flavor dependence

Track Efficiency

The restriction to tracks is a small effect to the EEC spectrum. Primary shift in the W distribution: Only 10% accuracy of track function moments required.

Holguin, Moult, AP, Procura, Schöfbeck, Schwarz 2024

Experimental systematics

Production mechanism:

- PDF uncertainty
- Hard scattering corrections

Jet substructure:

- Jet radius dependence
- Hadronization effects
- Impact of underlying event
- Wide angle soft physics
- Perturbative uncertainty

- Statistical sensitivity
- Jet energy scale
- Constituent energy scale
- Tracks-based measurement
- Heavy flavor dependence

Heavy Flavor Dependence

A known effect in detectors is the different jet response depending on the origin of a jet. Test the effect separately for particles that originate from a heavy flavor bottom quark or from a light quark.

Holguin, Moult, AP, Procura, Schöfbeck, Schwarz 2024

Experimental systematics

59

Production mechanism:

- PDF uncertainty
- Hard scattering corrections

Jet substructure:

- Jet radius dependence
- Hadronization effects
- Impact of underlying event
- Wide angle soft physics
- Perturbative uncertainty

- Statistical sensitivity
- Jet energy scale
- Constituent energy scale
- Tracks-based measurement
- Heavy flavor dependence

Heavy Flavor Dependence

A known effect in detectors is the different jet response depending on the origin of a jet. Smaller effect for track-based EEC.

Holguin, Moult, AP, Procura, Schöfbeck, Schwarz 2024

Experimental systematics

Production mechanism:

- PDF uncertainty
- Hard scattering corrections

Jet substructure:

- Jet radius dependence
- Hadronization effects
- Impact of underlying event
- Wide angle soft physics
- Perturbative uncertainty

- Statistical sensitivity
- Jet energy scale
- Constituent energy scale
- Tracks-based measurement
- Heavy flavor dependence

We are done ...

Key relevant effects:

- Jet radius dependence: Found to be purely perturbative.
- **Perturbative uncertainty:** Key effects of NLO corrections to the top quark decay and Sudakov resummation in the peak
- **Track-based measurement:** Extending the track function formalism to apply for new distributions measured on the top Jet-based measurement and W distribution peaks. Hadronization

· mar **DGLAP** evolution fragmenta Hard scattering <u>Contamination</u> M lele ' **Froton structure physic**: 09999999999999999999999999999

61

Production mechanism:

- PDF uncertainty
- Hard scattering corrections

Jet substructure:

- Jet radius dependence
- Hadronization effects
- Impact of underlying event
- Wide angle soft physics
- Perturbative uncertainty

- Statistical sensitivity
- Jet energy scale
- Constituent energy scale
- Tracks-based measurement
- Heavy flavor dependence

Looking ahead...

- Demonstrate **robustness** using simulations.
- Compute precise predictions using analytical calculations
- EECs are **completely** inclusive like the total cross-section

Top quark decay

LO in simulations

New frontier

-Energy scale uncertainty

Exploit the excellent angular resolution of the tracker

Hadronization models Use a field theoretic approach

CONTRACTOR OF CO

Standard

candle

Contaminati

- Prospects of better than 500 MeV (0.3%) precise $M_{\rm top}$ at the HL-LHC
- (better than 1 GeV with Run 3)
- $M_{\rm top}$ in a well-defined mass scheme

Thank you!

Backup

Why care about the top mass? [EW Stability]

Important role in the analysis of electroweak vacuum stability

- Are we living in a true-vacuum or is there another global minimum • or a bottomless abyss in the Higgs effective potential?
- The outcome of EW vacuum stability depends sensitively on the \bullet precision on the top quark mass.
- Lifetime of our vacuum to decay through bubble nucleation \bullet (related to Higgs instability scale): Khoury, Steingasser 2021-22

$$\tau_{\rm EW} \sim 10^{983^{+1410}_{-430}}$$
 years

The enormous error stretching 2000 orders of magnitude results from the top mass precision!

- Need sub-percent (< 1 GeV) M_{top} to answer these questions: a longstanding problem for three decades.

The top quark imprint in EEEC

- A naive sum over the three angles picks up contributions from collinear splittings
- To capture the correlations among the three prongs we need to avoid such configurations
- Consider equilateral configurations with a asymmetry cut $\delta \zeta$.

- Distinct peak at $\zeta_t \sim 3(m_t/Q)^2$ for equilateral configuration: peak dominated by hard decay of the top
- Appears at relatively larger angles: Resilient to collinear radiation, $\alpha_{s} \ln \zeta_{t}^{peak} < 1$
- The asymmetry cut $\delta \zeta < m_t^2/p_T^2$ eliminates the otherwise overwhelming contribution of collinear splittings.

Holguin, Moult, AP, Procura 2022

Imprint of the W in the EEEC distribution

- The observable we define to extract the *W*-imprint: $T(\zeta, \zeta_S, \zeta_A) \equiv \int \left(\prod d\zeta_{ij} \right) \delta\left(\zeta - \left(\frac{\sqrt{\zeta_{ij}} + \sqrt{\zeta_{jk}}}{2} \right)^2 \right) \Theta\left(\zeta_{ij} \right) d\zeta_{ij} d\zeta_{$
- ζ : average of medium and long sides, ζ_S : Min cut a medium and long sides

As ζ_S is lowered we allow for more squeezed configuration and see the peak at $\zeta_W \sim m_W^2/p_T^2$ emerging.

Holguin, Moult, AP, Procura, Schöfbeck, Schwarz 2023

$$\zeta_{ij} \ge \zeta_{jk} \ge \zeta_{ki} \ge \zeta_S \Theta \left(\zeta_A - \left(\sqrt{\zeta_{ij}} - \sqrt{\zeta_{jk}} \right)^2 \right) \widehat{\mathscr{M}}^{(1)} \left(\zeta_{ij}, \zeta_{jk}, \zeta_{jk} \right)^2$$

• ζ : average of medium and long sides, ζ_S : Min cut on short side, ζ_A : Max allowed difference between the

67

A robust m_W sensitive projection

- The $T(\zeta, 0, \infty)$ distribution is impacted by nonperturbative effects in back-to-back Sudakov.
- The ratio against 2-point correlator is robust against both collinear and b2b hadronization effects:

• This works because the same back-to-back soft function $S_{\perp}(b_{\perp}, \mu, \nu)$ appears in num and denom. Cancellation of leading nonperturbative effects: Holguin, Lee, Moult, AP, Procura [in progress]

$$\begin{split} & \text{EEC}(\zeta) \sim J_{\text{EEC}} \otimes J_{\text{EEC}} \otimes S_{\perp} \\ & T(\zeta, 0, \infty) \sim J_{\text{EEEC}} \otimes J_{\text{EEC}} \otimes S_{\perp} \end{split}$$

• Remaining shifts in the $W(\zeta)$ primarily arise from the shifts in the $\langle p_{T,\text{jet}} \rangle$.

Squeezed EEC region: $\sqrt{z_{12}} \sim \sqrt{1 - z_{13}} \sim \sqrt{1 - z_{23}} \sim \lambda \ll 1$

We derive a new factorization formula:

$$\frac{1}{\sigma_0} \frac{\mathrm{d}\sigma_{\mathrm{EEEC}}}{\mathrm{d}z_{13}\mathrm{d}z_{12}\mathrm{d}z_{23}} = \frac{1}{8} \int \mathrm{d}^2 \boldsymbol{q}_T \,\delta\left(1 - z_{13} - \frac{\boldsymbol{q}_T^2}{Q^2}\right) \int \mathrm{d}^2 \boldsymbol{b}_T \\ \times \sum_f H_f(Q,\mu) J_{\mathrm{EEEC}}^f(Qb_T, \{z_{ij}\}, L_b)$$

The squeezed EEEC jet function involves dihadron TMD + contact term:

$$J_{\text{EEEC}}^{f(1)} \equiv J_{f(12)}^{(1)} \left(b_T Q, \{ z_{ij} \}, \epsilon \right) + \delta(z_{12}) \delta(z_{23} - z_{13}) \int_0^1 \mathrm{d}z \ z^d \left[\mathcal{D}_{g/q}^{(1)}(z, b_\perp, \epsilon) + \mathcal{D} \right] dz$$

Key takeaways:

- Rapidity divergence only in the contact term
- Non-trivial cancellation of IR poles

$$\int_{0}^{1} dz \ z^{d} \left[\mathcal{D}_{g/q}^{(1)} \right]$$
$$= C_{F} \left(\frac{3}{\epsilon} + C_{F} \right)$$
$$+ C_{F} \left[\frac{F_{f}}{\epsilon} + C_{F} \right]$$

69

Universal behavior in the collinear limit

In QCD a time-like factorization formula can be derived to resum large logs in the collinear limit: *Dixon, Moult, Zhu 2019*

$$\Sigma\left(z,\ln\frac{Q^2}{\mu^2},\mu\right) = \int_0^1 \mathrm{d}x \, x^2 \vec{J}_{\mathrm{EEC}}\left(\ln\frac{zx^2Q^2}{\mu^2},\mu\right) \cdot \vec{H}\left(x,\frac{Q^2}{\mu^2},\mu\right) \times \left(1+\mathcal{O}(z)\right)$$

Strong coupling determination:

- 4% precise (the best jet substructure-based) α_s extraction from E3C/E2C ratio by CMS
- EECs enable a field-theoretic analysis of hadronization effects:

 $\frac{1}{\sigma} \frac{d\sigma^{[N]}}{dx_L} = \frac{1}{\sigma} \frac{d\hat{\sigma}^{[N]}}{dx_L} + \frac{N}{2^N} \frac{\overline{\Omega}_{1q}}{Q(x_L(1-x_L))^{3/2}}$ Lee, AP, Stewart, Sun 2405.19396
[Accpeted by PRL]
(Also see Chen, Monni, Xu, Zhu 2046.06668)

Why is EEC robust against hadronization?

Unlike the jet mass, the EEC is a $SCET_{II}$ observable:

- Top width Γ_t provides a cutoff and renders hadronization effects tiny
- Jet mass sensitive to a ultra soft mode at scales lower than Γ_t and hence has large sensitivity to hadronization

EECs are also insensitive to the contamination

The correlator measurement can be expressed as

The $p_{T,t}$ determines the opening angle but can only be accessed via the jet p_T .

• For now fix the hard $p_{T,t}$ in MC by hand:

Simplifications:

- Top quarks produced with a fixed hard p_T as in e^+e^- collisions.
- Can solely focus on the impact of the underlying event

72
EECs are also insensitive to the contamination

The correlator measurement can be expressed as

- The underlying event still impacts the jet p_T and adds contamination to the triplets sampled.
- The correlator measurement after normalization is however completely insensitive to the UE.

Holguin, Moult, AP, Procura 2022

- Use the standard CP5 tune for Pythia and Vincia
- Herwig Angular ordered shower differs from the others by 3% due to different approximations to NLO top decay

$$m_t = C \; m_W \sqrt{\zeta_t/\zeta_W}$$

Shower	R = 0.8	R = 1	R = 1.2	R = 1.5
Pythia 8.3	1.075 ± 0.001	1.090 ± 0.001	1.099 ± 0.001	1.105 ± 0.00
Vincia 2.3	1.078 ± 0.001	1.091 ± 0.002	1.101 ± 0.001	1.107 ± 0.00
Herwig 7.3 Dipole	1.078 ± 0.001	1.088 ± 0.001	1.098 ± 0.001	1.106 ± 0.00
Herwig 7.3 A.O.	1.092 ± 0.001	1.104 ± 0.001	1.113 ± 0.001	1.120 ± 0.00

Calibrating the top mass

Holguin, Moult, AP, Procura, Schöfbeck, Schwarz 23-24

A slope in p_T is not an issue

- this p_T dependence.

• There is a systematic procedure to incorporate power corrections in perturbative calculations which describe