

FCNC AND PROPERTIES IN TOP PHYSICS

Lucio Cerrito University and INFN, Roma Tor Vergata

on behalf of the ATLAS and CMS Collaborations

PHYSICS OFTOP QUARKS

- Tests of the Standard Model (production, decay, coupling... etc)
- Top quark does not hadronize: momentum and spin transferred to decay products
- O Search for processes with similar signature (VLQ, Z'...)
- O Natural mass (yt≈1), top quark mass is a fundamental parameter of the SM, and crucial for SM constraints via loop diagrams

PART I: PROPERTIES

- Tests of the Standard Model (production, decay, coupling... etc)
- Top quark does not hadronize: momentum and spin transferred to decay products
- Search for processes with similar signature (VLQ, Z'...)
- Natural mass (y_t ≈ I), top quark mass is a fundamental parameter of the SM, and crucial for SM constraints via loop diagrams

RED: Discussed in this talk

TOP PAIR QUANTUM ENTANGLEMENT

- Spin entanglement can be observed by increase in the strength of the top and anti-top spin correlations
- Spin entanglement is inferred from the angle between the charged leptons in the parent top- antitop-quark rest frames
- Measurement targets around the top-antitop production threshold

Signature: | Electron and | Muon of opposite electric charges, 2 jets (>= | b-tagged)

- Restricted phase space: 340 < $m_{t\bar{t}}$ < 380 GeV and two control region beyond 380 GeV

- Background level <10%

Method: Entanglement marker:

$$D = tr[C]/3 = -3 < cos\phi >$$

C: spin correlation matrix

 ϕ : angle between the charged-lepton directions, in the rest frames of the parent top-quarks:

$$D < -1/3$$
 indicates entanglement

arXiv:2311.07288 (2024) 13 TeV, 140 fb⁻¹

Nature, 633, 542-547 (2024)

4

TOP PAIR QUANTUM ENTANGLEMENT

OCalibration curve is derived to correct to particle-level D

OParton-level bound (-1/3) converted to particle-level one (-0.322,Powheg+Pythia)

OSM prediction from Powheg+Pythia

OUncertainties grouped into $t\bar{t}$ modelling, backgrounds and detector-related

Particle-Level D calibration curve

Particle-Level D results, in signal and validation regions

Nature, 633, 542-547 (2024)

arXiv:2311.07288 (2024)

13 TeV, 140 fb⁻¹

TOP PAIR QUANTUM ENTANGLEMENT

Source of uncertainties by group

Source of uncertainty	$\Delta D_{\text{observed}}(D = -0.537)$	$\Delta D \ [\%]$	$\Delta D_{\text{expected}}(D = -0.470)$	ΔD [%]
Signal modeling	0.017	3.2	0.015	3.2
Electrons	0.002	0.4	0.002	0.4
Muons	0.001	0.2	0.001	0.1
Jets	0.004	0.7	0.004	0.8
<i>b</i> -tagging	0.002	0.4	0.002	0.4
Pile-up	< 0.001	< 0.1	< 0.001	< 0.1
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.002	0.4	0.002	0.4
Backgrounds	0.005	0.9	0.005	1.1
Total statistical uncertainty	0.002	0.3	0.002	0.4
Total systematic uncertainty	0.019	3.5	0.017	3.6
Total uncertainty	0.019	3.5	0.017	3.6

Nature, 633, 542-547 (2024) arXiv:2311.07288 (2024)

13 TeV, 140 fb⁻¹

$D = -0.537 \pm 0.002$ (stat.)	S	Signal modelling uncertainties
±0.019 (syst.) (-0.470±0.002 (stat.)±0.017 (syst.)),	Systematic uncertainty source	Relative size (for SM <i>D</i> value)
OMore than 5 s.d. significance OFirst observation of entanglement in quark-antiquark pair	Top-quark decay Parton distribution function Recoil scheme Final-state radiation Scale uncertainties NNLO QCD + NLO EW reweighting pThard setting Top-quark mass Initial-state radiation Parton shower and hadronization h_1 setting	$ \begin{array}{c} 1.6\% \\ 1.2\% \\ 1.1\% \\ 1.1\% \\ 1.1\% \\ 1.1\% \\ 0.8\% \\ 0.7\% \\ 0.2\% \\ 0.2\% \\ 0.1\% \end{array} $
	h_{damp} setting	0.1%

L. CERRITO - FCNC and Properties in Top Physics

- Tops from QCD $t\bar{t}$ production are unpolarised at LO. Their spins are strongly correlated
- Spin correlations depend on production mechanism, $m(t\bar{t})$ and scattering angle of top quark
- Measurement targets Polarisation vectors and Spin Matrix coefficients based on the angular distributions of tt decay products

Method: Entanglement markers for both lowand high-mass of the $t\overline{t}$ system, i.e. for spinsinglet (D) and spin-triplet (\widetilde{D}) states

Differential cross-section

$$\begin{split} \Sigma_{\text{tot}}(\phi_{p(\bar{p})},\theta_{p(\bar{p})}) &= \frac{d^4\sigma}{d\phi_p\,d\cos(\theta_p)\,d\phi_{\bar{p}}\,d\cos(\theta_{\bar{p}})} \\ &= \sigma_{\text{norm}}\big(1+\kappa\mathbf{P}\cdot\mathbf{\Omega}+\bar{\kappa}\bar{\mathbf{P}}\cdot\bar{\mathbf{\Omega}}-\kappa\bar{\kappa}\mathbf{\Omega}\cdot(C\bar{\mathbf{\Omega}})\big), \end{split}$$

C: spin correlation matrix P, \overline{P} : polarisation vectors Ω , $\overline{\Omega}$: direction of decay products PRD 110 (2024) 112016 13 TeV, 138 fb⁻¹

Complements analysis in dilepton channel, ROPP 87 (2024) 117801 36 fb⁻¹

• Differential cross section fit for the polarisation and spin correlation, in bins of $m(t\bar{t})$ vs. $|\cos\theta|$ and $p_T(t)$ vs. $|\cos\theta|$

• Maximul likelihood fit of 4 selections (2b Shigh, 2b Slow, 1b Shigh,

Ib Shigh) and 4 data-taking periods

2b S_{high}

post-fit

0.4

• Fit for polarisation and spin-correlation, or for entanglement markers

Events

Ratio to SM Pred.

0.8

 $|\cos(\theta)| = 0$

m(tł) [GeV1800

10⁴

10³

CMS

PRD 110 (2024) 112016 13 TeV, 138 fb⁻¹

1.0

13000

0.7

- Polarisations compatible with zero
- Diagonal C_{nn} , C_{kk} and C_{rk} differ from zero

• Stronger entanglement in D seen for $p_T(t) < 50$ GeV (3.5 s.d.) and in \tilde{D} for $m_{t\bar{t}} > 800$ GeV (6.7 s.d.)

PRD 110 (2024) 112016

13 TeV, 138 fb⁻¹

PRD 110 (2024) 112016

Entanglement results for the D measurement in the threshold region (upper left), D measurement in the high-m ($t\bar{t}$) region (upper right), and the full matrix measurement in different m ($t\bar{t}$) regions (lower).

INTERPRETATION of RESULTS

- The measurement of the top anti(quark) polarisation and their spin correlation coefficients can also be interpreted in terms of *"magic of quantum states"* (M₂)
- Property M_2 of quantum states quantifying the potential computational advantage over classical states. High M_2 indicates more advantage: $(1 + \sum_{i=1}^{n} |(P^4 + \bar{P}^4)| + \sum_{i=1}^{n} |C^4|) = P_i$

$$\tilde{M}_{2} = -\log_{2}\left(\frac{1 + \sum_{i \in n, k, r} [(P_{i}^{4} + \bar{P}_{i}^{4})] + \sum_{i, j \in n, k, r} C_{ij}^{4}}{1 + \sum_{i \in n, k, r} [(P_{i}^{2} + \bar{P}_{i}^{2})] + \sum_{i, j \in n, k, r} C_{ij}^{2}}\right)$$

P_i: polarisation coefficients *C_{ij}*: Spin correlation coefficients

• Good agreement with the Standard Model

• Highest M_2 at the production threshold, while near constant with low top quark scattering angle in the $t\bar{t}$ rest frame, and variable with $p_T(top)$

TOP QUARK MASS: DIRECT

momentum of the top quark

Submitted to PLB arXiv:2502.18216 (2025)

13 TeV, 140 fb⁻¹

Signature: I lepton (e or μ) + large-R jet + \geq I b-jet. $\Delta R(e, J) > 1.0$

ODirect top mass measurement in events with high transverse

Method: Fit to mean value of invariant mass of the large-R (top) jet. Profile likelihood to 2 other variables to limit systematic uncertainties, m_{jj} and m_{tj}

OUses hadronically decaying top quark to a large-radius jet ("top-jet")

TOP QUARK MASS: DIRECT

OSignificant improvement over previous ATLAS measurements

OGood agreement with other measurements

ONon-negligible statistical uncertainty Grouped breakdown of the uncertainty sources

Source	Uncertainty [GeV]
JES	± 0.29
Radiation (ISR and FSR)	± 0.17
Colour reconnection (CR1 and CR2)	± 0.15
JES heavy flavour	± 0.14
Parton shower and hadronisation model	± 0.14
JER	± 0.10
MC statistics	± 0.08
Underlying event	+ 0.08
Recoil	± 0.07
Fit closure	± 0.07
Background modelling	± 0.05
Matrix element matching $(p_T^{hard} = 1)$	± 0.04
<i>b</i> -tagging	± 0.04
Higher-order corrections	± 0.02
$E_{\rm T}^{\rm miss}$	± 0.02
Pileup	± 0.01
JVT	± 0.01
PDF	± 0.01
Leptons	± 0.01
Luminosity	< 0.01
Total statistical	±.0.27
Total systematic	± 0.46
Total	± 0.53

Submitted to PLB arXiv:2502.18216 (2025)

13 TeV, 140 fb⁻¹

This measurement, compared to selected mt determinations

PART 2: DECAY

- Test of SM (production, decay, coupling....etc)
- Top quark does not hadronize: momentum and spin transferred to decay products
- Search for processes with similar signature (VLQ, Z'...)
- Natural mass (y_t ≈ I), top quark mass is a fundamental parameter of the SM, and crucial for SM constraints via loop diagrams

RED: Discussed in this talk

LFU IN W-BOSON TO e/μ FROM TOP DECAY

O Lepton Flavour Universality (LFU) is a key axiom of the S.M. OMeasurement of the $t\bar{t}$ production cross section in ee, $e\mu$, $\mu\mu$ final states allows LFU test, to address "anomalies" reported in b-hadron decays ODetermines the ratio of BR's: $R_W^{\mu/e} = B(W \to \mu\nu)/B(W \to e\nu)$ OIn PDG: $R_W^{\mu/e} = 1.002 \pm 0.006$

EPJ C 84 (2024) 993 arXiv:2403.02133 (2024)

13 TeV, 140 fb-1

Signature: Two electrons and muons of opposite electric charges: ee, $\mu\mu$, e μ

- I or 2 *b*-tagged jets from the $t\bar{t}$ production **Method**: Simultaneous measurement of the ratio of BR's for $Z \rightarrow \mu\mu$ and $Z \rightarrow ee$

$$R_{WZ}^{\mu/e} = \frac{R_W^{\mu/e}}{\sqrt{R_Z^{\mu\mu/ee}}} = \frac{\mathcal{B}(W \to \mu\nu)}{\mathcal{B}(W \to e\nu)} \cdot \sqrt{\frac{\mathcal{B}(Z \to ee)}{\mathcal{B}(Z \to \mu\mu)}}$$

Number of leptons in simulated selected $t\bar{t}$ events

LFU IN W-BOSON TO e/μ FROM TOP DECAY

OSingle maximum likelihood fit with Gaussian formulation to the observed event counts

O 10 free parameters: 4 parameters of interest, plus 3 *b*-tag jet efficiencies, 2 Zj backgrounds and 1 Zj isolation efficiency propagated to $t\bar{t}$

EPJ C 84 (2024) 993 arXiv:2403.02133 (2024)

13 TeV, 140 fb⁻¹

L. CERRITO - FCNC and Properties in Top Physics

LFU IN W-BOSON TO e/μ FROM TOP DECAY

OMeasured value of $R_{WZ}^{\mu/e}$ converted to $R_W^{\mu/e}$ using $R_{Z-ext}^{\mu\mu/ee} = 1.0009 \pm 0.0028$

EPJ C 84 (2024) 993 arXiv:2403.02133 (2024)

13 TeV, 140 fb⁻¹

 $R_W^{\mu/e} = R_{WZ}^{\mu/e} \sqrt{R_{Z-ext}^{\mu\mu/ee}} = 0.9995 \pm 0.0022 \text{ (stat)} \pm 0.0036 \text{ (syst)} \pm 0.0014 \text{ (ext)}$

OLimited by lepton ID, Z+jets modelling, and Parton Density Functions OHigher precision than the previous World Average

Measurement of $R_W^{\mu/e}$ from this analysis compared to previous results

LFU IN W-BOSON TO e/T FROM TOP DECAY

OMeasurement of the $t\bar{t}$ production cross section, distinguishing $W \to \tau v_{\tau}$ (with $\tau \to e v_e v_{\tau}$) and $W \to e v_e$ ODetermines the ratio of BR's: $R_{\tau/e} = B(W \to \tau \nu)/B(W \to (e\nu)$ OCombined LEP: $R_{\tau/e} = 1.063 \pm 0.027$ Submitted to JHEP arXiv:2412.11989 (2024)

13 TeV, 140 fb⁻¹

Complements $R_{\tau/\mu}$ and $R_{\mu/e}$

Signature: One tag electron or muon and one probe electron from $W \rightarrow e$ (prompt) or $W \rightarrow \tau \rightarrow e$

- Prompt case distinguished from τ with electron p_T and displacement of track

 $- \ge 2$ b-tag jets

Method:

-Calibration of d_0 in MC simulation from data $Z \rightarrow e^+e^-$ events

- Two-dimensional binned templated likelihood fit to the p_T and $|d_0|$ distributions

|do(e)| distribution after calibration

LFU IN W-BOSON TO e/τ FROM TOP DECAY

ONumber of events in simulation agrees with data across channels (μe and ee) and p_T bins OGood agreement between data and simulation, both in total yield and shape Distribution of |d0| in data and simulation after fit, μe

Number of events in the μe channel from different sources, as estimated by the fit to the data

	$\mu e 7 < p_{\rm T} < 10 {\rm GeV}$	μe 10 < $p_{\rm T}$ < 20 GeV	μe $20 < p_{\rm T} < 250 \text{ GeV}$
Prompt $e(t\bar{t})$	1278 ± 28	13370 ±150	178000 ± 1000
$e \text{ from } \tau (t\bar{t})$	1092 ± 32	4490 ± 100	11670 ± 290
Prompt $e(Wt)$	34 ± 6	340 ± 60	5300 ± 900
$e \text{ from } \tau (Wt)$	28.0 ± 2.5	119 ± 16	380 ± 110
Prompt <i>e</i> (not from $t\bar{t}$ or Wt)	5.2 ± 1.5	23 ± 7	180 ± 50
$e \text{ from } Z \to \tau^+ \tau^-$	19.9 ± 0.4	85.4 ± 1.4	132.9 ± 2.2
Fake <i>e</i>	317 ±22	380 ± 33	840 ± 60
Total predicted	2770 ± 40	18880 ±120	196500 ± 400
Data	2768	18783	196552

Submitted to JHEP

13 TeV, 140 fb⁻¹

arXiv:2412.11989 (2024)

LFU IN W-BOSON TO e/τ FROM TOP DECAY

Submitted to JHEP arXiv:2412.11989 (2024)

13	TeV.	140	fb-
	,		

Uncertainty group	$\sigma(R_{\tau/e})$
Modelling of $t\bar{t}$ and Wt	0.011
d_0 calibration	0.006
Background estimation	0.005
Electron reconstruction, identification, and isolation	0.005
Electron energy scale	0.003
Electron energy resolution	0.002
Jet energy resolution	0.004
Jet energy scale	0.003
Jet <i>b</i> -tagging	0.002
Muon reconstruction, identification, and isolation	0.001
Other sources	0.002
Variation of k_{sig} and $k(\mu/e)$	0.003
Finite size of simulated samples	0.003
$B(W \to \tau \nu_{\tau} \to e \nu_e \nu_{\tau} \nu_{\tau})$	0.002
Total systematical uncertainty	0.020
Data statistical uncertainty	0.012
Total uncertainty	0.024

Breakdown of statistical and systematic uncertainties

$R_{\tau/e} = 0.975 \pm 0.012$	$2 (stat.) \pm 0.020$	(syst.).
--------------------------------	-----------------------	----------

Measured values of $R_{T/e}$ in different p_T bins

$p_{\rm T}$ bin	$R_{ au/e}$
$7 < p_{\rm T} < 10 {\rm GeV}$	$1.13 \pm 0.11 \text{ (stat)} \pm 0.07 \text{ (syst)}$
$10 < p_{\rm T} < 20 {\rm GeV}$	0.93 ± 0.04 (stat) ± 0.02 (syst)
$20 < p_{\rm T} < 250 { m GeV}$	0.98 ± 0.04 (stat) ± 0.02 (syst)

PART 3: FCNC IN PRODUCTION AND DECAY

- Test of SM (production, decay, coupling....etc)
- Top quark does not hadronize: momentum and spin transferred to decay products
- Search for processes with similar signature (VLQ, Z'...)
- Natural mass (y_t ≈ I), top quark mass is a fundamental parameter of the SM, and crucial for SM constraints via loop diagrams

RED: Discussed in this talk

OSearch for Flavour Changing Neutral Current in tHq and $t\bar{t}$ with $t \rightarrow Hq$ (q=u,c) OConsiders Higgs to WW, ZZ or TTOSM predictions for these FCNC are of order $O(\leq 10^{-15})$ EXPERIMENT EXPERIMENT EXPERIMENT

Signature: 2 leptons Same Sign or 3 leptons; \geq 1 jet (\geq 1 b-jet) **Method**: Single discriminant using feed-forward neural network in signal region, then maximum-likelihood fit

Feynman diagrams of the $t\bar{t}(t \rightarrow Hq)$ decay signal process resulting in the 3l final state 0000000 g 0000000 Η g u/c

Updates an earlier analysis with 36.1 fb⁻¹

13 TeV, 140 fb⁻¹

- OFour signal regions (2 each for production and decay); 7 control regions for backgrounds
- OCombinatorics addressed with Recursive Jigsaw Recontruction and Neutrino estimator
- **ONeuroBayes implementation for a discriminant** $D_{NN} = [0, 1]$

Definition of sign	al regions			
	SR2ℓDec	$SR2\ell Prod$	SR3 <i>l</i> Dec	SR3ℓProd
N _{jets}	≥ 4	≤ 3	≥ 3	≤ 2
$N_{b-\mathrm{tags}}$	= 1	= 1	= 1	= 1
$p_{\mathrm{T}}(\ell_1)$	$\geq 12 \text{GeV}$	$\geq 16 \text{GeV}$	$\geq 20 \text{GeV}$	$\geq 20 \text{GeV}$
$p_{\mathrm{T}}(\ell_2)$	—	_	$\geq 16 \text{GeV}$	$\geq 16 \text{GeV}$
$ m(e,e)-m_Z $	$\geq 10 \text{GeV}$	$\geq 10 \text{GeV}$	_	_

Distribution of the most important NN input variable, H_T(jets) for the SR2lDec

EPJ C 84 757 (2024)

13 TeV, 140 fb⁻¹

arXiv:2404.02123 (2024)

OFit for normalisation parameter of the signal

ATLAS EXPERIMENT

EPJ C 84 757 (2024) arXiv:2404.02123 (2024)

The D_{NN} distribution in the SR2lDec, obtained from the signal-plus-background fit to data in the *tHc* channel.

Best fit value of the tHu (tHc) signal:

$$\mu_{tHq} = -0.03 \pm 0.15(-0.08 \pm 0.19)$$

CL_S method limits derived. Systematics cause a 20% degradation of the limits 95% C.L. limits

Signal	Observed (expected) $\mathcal{B}(t \to Hq)$	95% CL upper limits $ C_{u\phi}^{qt,tq} $
tHu	$2.8(3.0) \times 10^{-4}$	0.71 (0.73)
tHc	$3.3(3.8) \times 10^{-4}$	0.76 (0.82)

95% C.L. combined limits to *u* and *c*, using complementary *H* decays

13 TeV, 140 fb⁻¹

OSearch for Flavour Changing Neutral Current in tHq and tt with $t \rightarrow Hq$ (q=u,c) OConsiders Higgs to WW, ZZ or $\tau\tau$ OSM predictions for these FCNC are of order 10⁻¹⁵ to 10⁻¹⁷

Signature: ≥ 2 leptons (e/ μ) Same Sign; ≥ 1 jet (≥ 1 b-jet) **Method**: Boosted Decision Tree event classification for signal and background, with 33 input features and output in BDT discriminator value. Then a binned likelihood fit.

Representative Feynman diagrams for the production modes considered: FCNC decay and FCNC-associated production

Submitted to PRD arXiv:2407.15172 (2024)

13 TeV, 138 fb⁻¹

Complements analyses with different final states or smaller datasets

L. CERRITO - FCNC and Properties in Top Physics

FCNC OFTOP MEDIATED BY HIGGS BOSON

Measured limits on the coupling strength Measured limits on the branching fraction Branching fraction (t → Hc) (%) 0.1 ↓ Hc) (%) .15 또 보 138 fb⁻¹ (13 TeV) 138 fb⁻¹ (13 TeV) 95% CL Upper Limits 95% CL Upper Limits Observed Observed Median Expected Median Expected 0.1 ±1σ ±1σ $\pm 2\sigma$ $\pm 2\sigma$ 0.05 0, 0, 0.05 0.05 0.1 0.15 0.1 0.15 Branching fraction (t \rightarrow Hu) (%) κ_{Hut}

Submitted to PRD arXiv:2407.15172 (2024)

13 TeV, 138 fb⁻¹

OCombination with 2 earlier analyses with Higgs decaying to bottom quarks or photons

Observed and Expected limits, and Combination $\mathcal{B}(t \to Hu)$ $\mathcal{B}(t \to Hc)$ Analysis observed (expected) observed (expected) $H \rightarrow b\overline{b}$ [24] 0.079 (0.11)% 0.094 (0.086)% $H \rightarrow \gamma \gamma$ [25] 0.019 (0.031)% 0.073 (0.051)% Leptonic (this analysis) 0.072 (0.059)% 0.043 (0.062)% Combination 0.019 (0.027)% 0.037 (0.035)%

ONo excess over the SM is observed

Submitted to PRD arXiv:2407.15172 (2024)

13 TeV, 138 fb⁻¹

Summary of Other FCNC Measurements

Summary of the current 95% confidence level observed limits on the branching ratios of the top quark decays via flavour changing neutral currents (FCNC) to a quark and a neutral boson $t \rightarrow Xq$ (X = g, Z, γ or H; q=u or c) ATL-PHYS-PUB-2024-005

L. CERRITO - FCNC and Properties in Top Physics

SUMMARY

I presented 8 new measurements from last year
 All using full Run 2 datasets

O Chance to study rare top processes

• Spin correlation and polarisation tested in different kinematic regions of low- and high-m_{tt}

O New top mass measurement using boosted tops

O LFU improved in W decay to 0.44% (μ /e) and 2.3% (τ /e)

O FCNC Higgs-mediated improved to O(10-4)

Find out more at:

As https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults

http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP/index.html http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/TOP/index.html