Progress on two-loop Feynman integrals for $t\bar{t}W$ production

Dhimiter Canko

based on ongoing work in collaboration with Matteo Becchetti, Vsevolod Chestnov, Tiziano Peraro, Mattia Pozzoli, and Simone Zoia

Alma Mater Studiorum Università di Bologna Istituto Nazionale Di Fisica Nucleare Sezione di Bologna

Standard Model at the LHC 2025, Durham, 10/4/2025

Introduction

Need for more accurate theoretical predictions for $t\bar{t}W$ production:

- Background to key processes, such as $t\bar{t}H$ and $t\bar{t}t\bar{t}$ production.
- Relevant for many searches of physics beyond the Standard Model.
- Need for better description of experimental data [Calye/Jorge talks]

Validation and improvement of available approximations [Buonocore et al, 2023] [see Chiara's talk]. Required Precision $\rightarrow NNLO$!

000000

From Cross Section ... to Feynman Integrals

- Main bottleneck of NNLO prediction is the 2-loop amplitude $\mathcal{M}_n^{(2)}$!
- $\mathcal{M}_n^{(2)}$ is a sum of two-loop Feynman Diagrams \rightarrow Feynman Integrals (FIs)

$$\mathcal{M}_{n}^{(2)} = \sum_{t} C_{t} F_{t} \text{ with } F_{t} = \int d^{d} k_{1} d^{d} k_{2} \prod_{i \in t} \frac{1}{D_{i}^{a_{i}}}, \quad D_{i} = (k_{i} + p_{i})^{2} - m_{i}^{2}$$

- Work in dimensional regularization: $4 \rightarrow d = 4 2\epsilon!$
- Fls satisfy integration-by-part relations [K. Chetyrkin, F. Tkachov, 1981; S. Laporta, 2004] \rightarrow Master Integrals

$$\int d^d k_1 d^d k_2 \frac{\partial}{\partial k_l^{\mu}} \prod_{i \in t} \frac{1}{D_i^{a_i}} = 0 \quad \longrightarrow \quad \{\mathcal{J}_i\}$$

• $\mathcal{M}_n^{(2)}$ expressed as a sum of Master Integrals (MIs) multiplied by process-dependent coefficients

$$\mathcal{M}_n^{(2)} = \sum_{i=1}^{N_{\mathsf{MIs}}} \tilde{C}_i \mathcal{J}_i$$

Leading Color $t\bar{t}W$ Integral Families

• Group into integral families \rightarrow compute MIs of each family

Modding out by permutations of the external legs: 30 genuinely new sectors containing 85 MIs!

$$I^{(F)}_{\vec{\nu}} = \int \mathrm{d}^d k_1 \mathrm{d}^d k_2 \, \prod_{i=1}^{11} \frac{1}{D^{\nu_i}_{F,i}}$$

Kinematics and Physical Channel

• We are interested in the process

$$0 \rightarrow \overline{t}(p_1) + t(p_2) + \overline{d}(p_3) + W(p_4) + u(p_5)$$

$$p_1^2 = p_2^2 = m_t^2$$
 $p_3^2 = p_5^2 = 0$ and $p_4^2 = m_w^2$

• Five-particle scattering + two different masses \rightarrow 7 independent invariants \rightarrow High complexity

$$\vec{x} = \left\{ s_{12}, s_{23}, s_{34}, s_{45}, s_{15}, m_t^2, m_w^2 \right\}$$
 with $s_{ij} = (p_i + p_j)^2$

• We focus to the physical channel relevant for $t\bar{t}W$ production $(35 \rightarrow 124)!$

Current Frontier @ Two-Loop MI Families

• Five external particles + internal/external masses

• Six external particles + without internal/external masses

(d) 6 partons [S. Abreu et al, 2024] & [J. Henn et al, 2025]

Computation of Master Integrals: Differential Equations

• MIs fulfill differential equations (DEs) w.r.t. \vec{x} [A. Kotikov, 1991; Z. Bern et al, 1994; T. Gehrmann et al, 2000]

$$\mathrm{d}\vec{\mathcal{J}}_F(\vec{x},\epsilon) = \mathrm{d}A^{(F)}(\vec{x},\epsilon)\cdot\vec{\mathcal{J}}_F(\vec{x},\epsilon)$$

• Laurent expansion of MIs around $\epsilon = 0 \rightarrow$ Compute up to desired order on ϵ

$$ec{\mathcal{J}}_{F}(ec{x},\epsilon) = \sum_{i} \epsilon^{i} ec{\mathcal{J}}_{F}^{(i)}(ec{x}) \hspace{0.2cm} ext{with} \hspace{0.2cm} i \geq -2L$$

• Basis not unique \rightarrow Good choice makes DEs easier to solve \rightarrow canonical DEs [J. Henn, 2013]

$$\mathrm{d}\vec{\mathcal{J}}_{F} = \epsilon \,\,\mathrm{d}A(\vec{x})\,\,\vec{\mathcal{J}}_{F}$$

• If functional space described by poly-logarithmic functions \rightarrow canonical d log-form

$$\mathrm{d}A(\vec{x}) = \sum_{\alpha} A_{\alpha} \, \mathrm{d} \log W_{\alpha}(\vec{x})$$

where W_{α} are called letters, and their total set alphabet.

- Iterative solution in ϵ .
- Compact expression of the connection matrices.
- Efficiently solved analytically and numerically.

Leading Singularities [N. Arkani-Hamed et al, 2012]

How to construct such a basis?

MIs with loop-integrand containing at most simple poles and constant leading singularities \downarrow

Analyze the integrand

• Example \rightarrow One-loop massive bubble in 2 dimensions ($x = m^2/p^2$)

$$\begin{array}{c} m^2 & d\log(z+c) = \frac{dz}{(z+c)} \\ p & 2D & -\infty \int \frac{da_1 \wedge da_2}{p^2(a_1a_2 - x)[(1+a_1)(1+a_2) - x]} \\ & = \int \frac{da_1}{p^2(a_1 + a_1^2 + x)} [d\log(a_1a_2 - x) - d\log(1 + a_1 + a_2 + a_1a_2 - x)] \\ & = \frac{1}{p^2\sqrt{1 - 4x}} \int d\log(...) \wedge d\log(...) \end{array}$$

Good Choice in this case: $(p^2\sqrt{1-4x}) \times (\text{One-loop massive bubble})!$

• Square roots can appear in leading singularities \rightarrow and not only ...

Nested Square Root Sector

• Existence of nested roots in pentagon-triangles observed in [F. Febres Cordero et al, 2023; S. Badger et al, 2024]

Figure: Nested square root sector of F_1 (3 MIs)

Leading singularities of 2 MIs contain nested square roots

$$NS_{\pm} = \pm \frac{\sqrt{b + 6am_t^2 \pm c r_1}\sqrt{b - 2am_t^2 \pm c r_1}}{r_1} \qquad \text{with} \qquad r_1 = \sqrt{G(p_1, p_2, p_3, p_4)}$$

where a and b are 2nd and 4th degree polynomials in \vec{x} , respectively.

Couples to one of the 4-point elliptic sectors! → Elliptic what? (see next slides)

Elliptic Integrals

• Complicated cases \rightarrow functional space extended beyond poly-logarithmics \rightarrow elliptic integrals! [A. Sabry, 1962]

• In such cases elliptic curves appear in the computation of the leading singularities

$$\int \frac{\mathrm{d}z}{\sqrt{\mathcal{P}_4(z)}} \wedge \mathrm{d}\log(...) \quad \text{with} \quad \mathcal{P}_4(z) = (a_1 - z)(a_2 - z)(a_3 - z)(a_4 - z)$$
Can we obtain canonical form?
$$\checkmark$$
Yes but hard to do (open problem)
$$\checkmark$$
Introduce transcendental functions in the DEs!
$$\checkmark$$
No available package to efficiently evaluate the solution 😢

4-point Elliptic Sector

• In F_1 two elliptic sectors appear that depend on four-point kinematics

- First already known from [S. Badger et al, 2024; M. Becchetti et al, 2025] \rightarrow depends on 4 invariants
- Second is New \rightarrow Same form but a bit more complicated \rightarrow depends on 5 invariants
- Elliptic curve of the form

$$\mathcal{P}_{4-\text{pt.}}(z) = (z + m_t^2)(z - 3m_t^2)\mathcal{P}_2(z)$$

where $\mathcal{P}_2(z)$ a second degree polynomial in z.

• Are the two curves identical? \rightarrow *j*-invariants are different \rightarrow No!

5-point Elliptic Sector

• In F_2/F_3 a five-point elliptic appears \rightarrow 7 invariants! \rightarrow First study of such a complicated case!

Figure: 5-point elliptic sector of F_2/F_3 (7 MIs)

. In the leading singularity of the scalar integral one gets

$$\int \left(\frac{\mathrm{d}z \wedge \mathrm{d}\log[\alpha'(z, z_9)]}{\sqrt{\mathcal{P}_{\text{5-pt.}}(z)}} - \frac{\mathrm{d}z \wedge \mathrm{d}\log[\alpha'(z, z_9)^{\dagger}]}{\sqrt{\mathcal{P}_{\text{5-pt.}}(z)^{\dagger}}} \right) \quad \text{with} \quad f^{\dagger} \equiv \left. f \right|_{r_1 \to -r_1}$$

- Two elliptic curves? \rightarrow NO \rightarrow same j-invariant!
- $\mathcal{P}_{5-pt.}$ is of degree 4 polynomial on z, while degree 14 in \vec{x} , containing 2787 terms!
- DEs size of F_2 and F_3 dominated by this sector!

Integral Bases Construction

$$\mathrm{d}\vec{\mathcal{J}}_{F}(\vec{x},\epsilon) = \mathrm{d}A^{(F)}(\vec{x},\epsilon)\cdot\vec{\mathcal{J}}_{F}(\vec{x},\epsilon)$$

- We construct bases of MIs so that the connection matrix of the DEs satisfies:
 - Blocks coupling MIs not containing nested roots/elliptic curves are ε-factorised
 - Other entries are at worst quadratic in ϵ (no elliptic functions/nested roots introduced)

$$\mathrm{d}A^{(F)}(\vec{x},\epsilon) = \sum_{k=0}^{2} \, \epsilon^{k} \left[\sum_{\alpha} c_{k\alpha}^{(F)} \, \mathrm{d} \log \left(W_{\alpha}(\vec{x}) \right) + \sum_{\beta} d_{k\beta}^{(F)} \, \omega_{\beta}(\vec{x}) \right]$$

- Free of spurious denominator factors (in F_2/F_3 allowing for one yields a better form)
- Substantially more compact than with an arbitrary basis
- Elliptic MIs chosen to be non-zero starting from the finite part!
- NeatIBP [Z. Wu et al, 2023] \rightarrow optimized IBPs + FiniteFlow [T. Peraro, 2019] \rightarrow reconstruct DEs!
- How to solve our DEs? → Generalized Series Expansion!

Generalized Series Expansion Method [F. Moriello, 2019]

• Semi-numerical method applied for solving DEs [see Renato's talk]

 $\gamma(t): \quad \gamma(0) = ec{s}_b \quad ext{and} \quad \gamma(1) = ec{s}_t \quad ext{with} \quad t \in [0,1]$

- Divide path from \vec{s}_b to \vec{s}_t into segments \rightarrow Expand and solve DEs therein!
- $\gamma(t)$ in the physical region \rightarrow no physical singularity crossed \rightarrow no analytic continuation!
- Mathematica: DiffExp [M. Hidding, 2020], SeaSyde [T. Armadillo et al, 2022], AMFlow Solver [X. Liu et al, 2022]
- C: LINE [R. Prisco et al, 2025]

	MIs	elliptic	roots	nested	entries	letters	one-forms	one-forms size
F_1	141	2	8	1	2339	101	119	6.7 MB
F_2	122	1	11	0	2027	122	84	311 MB
F ₃	131	1	12	0	2333	137	96	317 MB

$$\mathrm{d}A^{(F)}(\vec{x},\epsilon) = \sum_{k=0}^{2} \epsilon^{k} \left[\sum_{\alpha} c_{k\alpha}^{(F)} \mathrm{d} \log \left(W_{\alpha}(\vec{x}) \right) + \sum_{\beta} d_{k\beta}^{(F)} \omega_{\beta}(\vec{x}) \right]$$

- DiffExp implementation with in-house parametrization for obtaining numerical results.
- Boundary values generated by AMFlow [X. Liu et al, 2022].
- Cross check against AMFlow for 10 physical points.
- We verified that we can integrate between any of these 10 points.

Outcome

For the integral families contributing on $t\bar{t}W$ production in the leading colour approximation

- Created optimized basis addressing nested square roots and elliptic sectors
- Derived differential equations for this basis
- Provided DiffExp implementation for the numerical solution of the DEs

What's Next

- Creating a special function basis [T. Gehrmann et al, 2018; D. Chicherin et al, 2020; S. Badger et al, 2024]
- Exploring LINE [R. Prisco et al, 2025] and searching for ϵ -factorized bases
- Compute the two-loop amplitudes exploiting the good properties of our bases

Thank you!

Backup Slides: Pure Bases Construction \rightarrow [T. Gehrmann et al, 2014]

• Choose appropriate candidates that render MC DEs linear on ϵ

$$\partial_{\xi} \vec{G}^{\text{MC}} = (H_{0,\xi} + \epsilon H_{1,\xi}) \vec{G}^{\text{MC}}$$

• H_0 can be removed by rescaling MIs a matrix that satisfies the following DEs

$$\partial_{\xi} \tilde{T}^{\rm MC} = - \tilde{T}^{\rm MC} H_{0,\xi}$$

• New candidates defined as $\vec{I}^{MC} = \tilde{T}^{MC} \vec{G}^{MC}$ acquire canonical DEs in MC

$$\partial_{\xi} \vec{I}^{MC} = \epsilon A^{MC}_{\xi} \vec{I}^{MC}$$
 with $A^{MC}_{\xi} = \tilde{T}^{MC} H_{1,\xi} (\tilde{T}^{MC})^{-1}$

• Are \vec{l} pure beyond MC? \rightarrow relax cut conditions \rightarrow may appear sub-sector entries linear on ϵ

$$\partial_{\xi}\vec{I} = \epsilon A_{\xi}^{\mathsf{MC}}\vec{I}^{\mathsf{MC}} + (h_{0,\xi} + \epsilon h_{1,\xi})\vec{I}^{\mathsf{LS}}$$

• To set them in canonical form rotate the lower sector ϵ^0 contributions by integrating out $h_{0,\xi}$

$$\vec{I} = \vec{I}^{MC} + \tilde{T}^{LS}\vec{I}^{LS}$$
 with $\partial_{\xi}\tilde{T}^{LS} = -h_{0,\xi}$

Backup Slides: j-invariant of Elliptic Curves

• We remind the definition of elliptic curve

$$y^2 = (z - a_1)(z - a_2)(z - a_3)(z - a_4)$$

• From the roots of the elliptic curve the cross ratio is defined

$$\lambda = \frac{(a_1 - a_4)(a_2 - a_3)}{(a_1 - a_3)(a_2 - a_4)}$$

• And from the cross ratio the *j*-invariant is defined

$$j = 256 \frac{(1 - \lambda(1 - \lambda))^3}{\lambda^2 (1 - \lambda)^2}$$