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Introduction

Need for more accurate theoretical predictions for tt̄W production:

Background to key processes, such as tt̄H and tt̄tt̄ production.
Relevant for many searches of physics beyond the Standard Model.
Need for better description of experimental data [Calye/Jorge talks].

(a) [CMS, 2023] (b) [Atlas, 2024]

Validation and improvement of available approximations [Buonocore et al, 2023] [see Chiara’s talk].

Required Precision → NNLO!

2 / 18



From Cross Section ... to Feynman Integrals

• Main bottleneck of NNLO prediction is the 2-loop amplitude M(2)
n !

• M(2)
n is a sum of two-loop Feynman Diagrams → Feynman Integrals (FIs)

M(2)
n =

∑
t

Ct Ft with Ft =
∫

dd k1dd k2
∏
i∈t

1
Dai

i
, Di = (ki + pi )2 −m2

i

• Work in dimensional regularization: 4 → d = 4− 2ε!

• FIs satisfy integration-by-part relations [K. Chetyrkin, F. Tkachov, 1981; S. Laporta, 2004] → Master Integrals∫
dd k1dd k2

∂

∂kµl

∏
i∈t

1
Dai

i
= 0 −→ {Ji}

• M(2)
n expressed as a sum of Master Integrals (MIs) multiplied by process-dependent coefficients

M(2)
n =

NMIs∑
i=1

C̃iJi
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Leading Color tt̄W Integral Families

• Group into integral families → compute MIs of each family
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(b) F2 (122 MIs)
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(c) F3 (131 MIs)

• Modding out by permutations of the external legs: 30 genuinely new sectors containing 85 MIs!

I(F )
~ν

=
∫

dd k1dd k2

11∏
i=1

1
Dνi

F ,i
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Kinematics and Physical Channel

• We are interested in the process

0→ t̄(p1) + t(p2) + d̄(p3) + W (p4) + u(p5)

p2
1 = p2

2 = m2
t p2

3 = p2
5 = 0 and p2

4 = m2
w

• Five-particle scattering + two different masses → 7 independent invariants → High complexity

~x =
{

s12, s23, s34, s45, s15,m2
t ,m2

w
}

with sij = (pi + pj )2

• We focus to the physical channel relevant for tt̄W production (35→ 124)!
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Current Frontier @ Two-Loop MI Families

• Five external particles + internal/external masses

(a) tt̄H [B. Page et al, 2023] (b) tt̄j [S. Badger et al, 2024] (c) VV ′j [S. Abreu et al, 2024]

• Six external particles + without internal/external masses

(d) 6 partons [S. Abreu et al, 2024] & [J. Henn et al, 2025]
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Computation of Master Integrals: Differential Equations

• MIs fulfill differential equations (DEs) w.r.t. ~x [A. Kotikov, 1991; Z. Bern et al, 1994; T. Gehrmann et al, 2000]

d ~JF (~x , ε) = dA(F )(~x , ε) · ~JF (~x , ε)

• Laurent expansion of MIs around ε = 0 → Compute up to desired order on ε

~JF (~x , ε) =
∑

i
εi ~J (i)

F (~x) with i ≥ −2L

• Basis not unique → Good choice makes DEs easier to solve → canonical DEs [J. Henn, 2013]

d ~JF = ε dA(~x) ~JF

• If functional space described by poly-logarithmic functions → canonical d log-form

dA(~x) =
∑

α
Aα d log Wα(~x)

where Wα are called letters, and their total set alphabet.

Iterative solution in ε.
Compact expression of the connection matrices.
Efficiently solved analytically and numerically.
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Leading Singularities [N. Arkani-Hamed et al, 2012]

How to construct such a basis?:

MIs with loop-integrand containing at most simple poles and constant leading singularities:

Analyze the integrand

• Example → One-loop massive bubble in 2 dimensions (x = m2/p2)

∝
∫

da1 ∧ da2
p2(a1a2 − x)[(1 + a1)(1 + a2)− x ]

=
∫

da1

p2(a1 + a2
1 + x)

[d log(a1a2 − x)− d log(1 + a1 + a2 + a1a2 − x)]

=
1

p2√1− 4x

∫
d log(...) ∧ d log(...)

d log(z + c) = dz
(z+c)

Good Choice in this case: (p2√1− 4x)× (One-loop massive bubble)!

• Square roots can appear in leading singularities → and not only ...
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Nested Square Root Sector

• Existence of nested roots in pentagon-triangles observed in [F. Febres Cordero et al, 2023; S. Badger et al, 2024]
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p2
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p1

Figure: Nested square root sector of F1 (3 MIs)

• Leading singularities of 2 MIs contain nested square roots

NS± = ±

√
b + 6am2

t ± c r1
√

b − 2am2
t ± c r1

r1
with r1 =

√
G(p1, p2, p3, p4)

where a and b are 2nd and 4th degree polynomials in ~x , respectively.

• Couples to one of the 4-point elliptic sectors! → Elliptic what? (see next slides)
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Elliptic Integrals

• Complicated cases → functional space extended beyond poly-logarithmics → elliptic integrals!
[A. Sabry, 1962]

[S. Laporta et al, 2004]

• In such cases elliptic curves appear in the computation of the leading singularities∫
dz√
P4(z)

∧ d log(...) with P4(z) = (a1 − z)(a2 − z)(a3 − z)(a4 − z)

Can we obtain canonical form?:
Yes but hard to do (open problem):

Introduce transcendental functions in the DEs!:

No available package to efficiently evaluate the solution
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4-point Elliptic Sector

• In F1 two elliptic sectors appear that depend on four-point kinematics
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(a) Elliptic of [S. Badger et al, 2024] (3 MIs)
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(b) 4-point elliptic sector of F1 (3 MIs)

First already known from [S. Badger et al, 2024; M. Becchetti et al, 2025] → depends on 4 invariants
Second is New → Same form but a bit more complicated → depends on 5 invariants

• Elliptic curve of the form

P4-pt.(z) = (z + m2
t )(z − 3m2

t )P2(z)

where P2(z) a second degree polynomial in z.

• Are the two curves identical? → j-invariants are different → No!
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5-point Elliptic Sector

• In F2/F3 a five-point elliptic appears → 7 invariants! → First study of such a complicated case!
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Figure: 5-point elliptic sector of F2/F3 (7 MIs)

• In the leading singularity of the scalar integral one gets∫ (
dz ∧ d log[α′(z, z9)]√

P5-pt.(z)
−

dz ∧ d log[α′(z, z9)†]√
P5-pt.(z)†

)
with f † ≡ f |r1→−r1

• Two elliptic curves? → NO → same j-invariant!

• P5-pt. is of degree 4 polynomial on z, while degree 14 in ~x , containing 2787 terms!

• DEs size of F2 and F3 dominated by this sector!
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Integral Bases Construction

d ~JF (~x , ε) = dA(F )(~x , ε) · ~JF (~x , ε)

• We construct bases of MIs so that the connection matrix of the DEs satisfies:

Blocks coupling MIs not containing nested roots/elliptic curves are ε-factorised

Other entries are at worst quadratic in ε (no elliptic functions/nested roots introduced)

dA(F )(~x , ε) =
2∑

k=0

εk
[∑
α

c(F )
kα d log

(
Wα(~x)

)
+
∑
β

d(F )
kβ ωβ(~x)

]
Free of spurious denominator factors (in F2/F3 allowing for one yields a better form)

Substantially more compact than with an arbitrary basis

• Elliptic MIs chosen to be non-zero starting from the finite part!

• NeatIBP [Z. Wu et al, 2023] → optimized IBPs + FiniteFlow [T. Peraro, 2019] → reconstruct DEs!

• How to solve our DEs? → Generalized Series Expansion!
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Generalized Series Expansion Method [F. Moriello, 2019]

• Semi-numerical method applied for solving DEs [see Renato’s talk]

γ(t) : γ(0) = ~sb and γ(1) = ~st with t ∈ [0, 1]

• Divide path from ~sb to ~st into segments → Expand and solve DEs therein!

• γ(t) in the physical region → no physical singularity crossed → no analytic continuation!

• Mathematica: DiffExp [M. Hidding, 2020], SeaSyde [T. Armadillo et al, 2022], AMFlow Solver [X. Liu et al, 2022]

• C: LINE [R. Prisco et al, 2025]

14 / 18



Results

MIs elliptic roots nested entries letters one-forms one-forms size
F1 141 2 8 1 2339 101 119 6.7 MB
F2 122 1 11 0 2027 122 84 311 MB
F3 131 1 12 0 2333 137 96 317 MB

dA(F )(~x , ε) =
2∑

k=0

εk
[∑
α

c(F )
kα d log

(
Wα(~x)

)
+
∑
β

d(F )
kβ ωβ(~x)

]

• DiffExp implementation with in-house parametrization for obtaining numerical results.

• Boundary values generated by AMFlow [X. Liu et al, 2022].

• Cross check against AMFlow for 10 physical points.

• We verified that we can integrate between any of these 10 points.
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Conclusion - Future Goals

Outcome
For the integral families contributing on tt̄W production in the leading colour approximation

Created optimized basis addressing nested square roots and elliptic sectors
Derived differential equations for this basis
Provided DiffExp implementation for the numerical solution of the DEs

What’s Next
Creating a special function basis [T. Gehrmann et al, 2018; D. Chicherin et al, 2020; S. Badger et al, 2024]

Exploring LINE [R. Prisco et al, 2025] and searching for ε-factorized bases
Compute the two-loop amplitudes exploiting the good properties of our bases

Thank you!
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Backup Slides: Pure Bases Construction → [T. Gehrmann et al, 2014]

• Choose appropriate candidates that render MC DEs linear on ε

∂ξ~GMC = (H0,ξ + εH1,ξ)~GMC

• H0 can be removed by rescaling MIs a matrix that satisfies the following DEs

∂ξT̃ MC = −T̃ MCH0,ξ

• New candidates defined as ~IMC = T̃ MC~GMC acquire canonical DEs in MC

∂ξ~IMC = εAMC
ξ
~IMC with AMC

ξ = T̃ MCH1,ξ(T̃ MC)−1

• Are ~I pure beyond MC? → relax cut conditions → may appear sub-sector entries linear on ε

∂ξ~I = εAMC
ξ
~IMC + (h0,ξ + εh1,ξ)~ILS

• To set them in canonical form rotate the lower sector ε0 contributions by integrating out h0,ξ

~I =~IMC + T̃ LS~ILS with ∂ξT̃ LS = −h0,ξ
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Backup Slides: j-invariant of Elliptic Curves

• We remind the definition of elliptic curve

y2 = (z − a1)(z − a2)(z − a3)(z − a4)

• From the roots of the elliptic curve the cross ratio is defined

λ =
(a1 − a4)(a2 − a3)
(a1 − a3)(a2 − a4)

• And from the cross ratio the j-invariant is defined

j = 256
(1− λ(1− λ))3

λ2(1− λ)2
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