
Interfacing to specialized tools

Fernando Abudinén, John Back, Michal Kreps, Thomas Latham

MC support tools workshop
IPPP Durham
April 03, 2025

Outline

▪ Introduction

▪ Discussion from EvtGen’s perspective on

❑Decay weighting to study effect of alternative configurations

❑Plugins for final-state radiation

❑Propagating spin-information

1

Introduction

2

Simulation in high-energy physics

3

Essential since we interpret measurements by comparing simulation with collision data
 Ideally, simulation should mirror data differing only by the knowledge of the “truth”

EPJ.C84.468(2024)

Measurement

ExperimentThe world

Theory Simulation

Collisions Analysis

Event
generators

Analysis

https://www.arxiv.org/abs/2312.12228

The EvtGen generator

▪ Implements detailed decay dynamics based on theoretical models

▪ Originally developed for BaBar and CLEO by Anders Ryd and David Lange

▪ Used in multiple high-energy physics experiments:

 ATLAS, Belle II, BES III, CMS, LHCb, …

4

𝑝

𝐵+
𝜏+

ഥ𝐷0

𝜸

EvtGen

FSR

Example collision
simulated by PYTHIA8

𝐾+

𝜋−

𝜋+

𝜈𝜏

ҧ𝜈𝜏

𝑝
Simulation generator package specialised for decays
of heavy particles containing 𝑏 and 𝑐 quarks.

Physics motivation

▪ Designed to handle complicated decay chains

▪ Account for dependencies between different observables

5

𝐵0𝐽/𝜓

𝜇−

𝜇+

co
s

𝜃
1

co
s

𝜃
1

𝜑

𝜑𝜑

Example decay with 𝐶𝑃 violation and
dependencies between decay time and
angular observables.

Υ 4𝑆 → 𝐵0𝐵0

Decay Chains

Concept for a reusable generic tool

▪ Simulate correctly the full decay chain implementing only individual nodes

 Use decay amplitudes instead of probabilities

 Make use of modular design in C++ implementation

6

𝐵0

𝜏+

ഥ𝐷0 𝐾+

𝜋−

𝜋+

𝜈𝜏

ҧ𝜈𝜏

𝐷∗−

𝜋−

Decays of heavy-flavour particles often
involve many sequential decays

Decay amplitudes

▪ Use decay amplitudes to simulate sequences of decays

▪ Each node in the chain generated separately

 Must be associated with a decay model

▪ Decay models provide the amplitudes

▪ Framework handles bookkeeping to generate full decay chain

7

𝐵0

𝜏+

ഥ𝐷0 𝐾+

𝜋−

𝜋+

𝜈𝜏

ҧ𝜈𝜏

𝐷∗−

𝜋−

Workflow

Generate kinematics of 𝐵0
according to phase space

Perform accept/reject based on

𝑃𝐵 = σ𝜆𝐷∗𝜆𝜏
𝐴𝜆𝐷∗𝜆𝜏

𝐵→𝐷∗𝜏𝜈
2

Propagate the spin-state
information to subsequent decays

through spin-density matrix

Decay models

EvtGen contains about 130 decay models

▪ General purpose models
▪ Based on particle spin properties

▪ Or specified helicity/partial wave amplitudes

▪ Semileptonic models with form-factors

▪ Dalitz plot decays (generic and specific Dalitz models)

▪ Specific models for electroweak penguins / radiative decays
▪ For example 𝑏 → 𝑠ℓℓ, 𝑏 → 𝑠𝛾

▪ Many models have versions including 𝑪𝑷 violation

8

External dependencies

HepMC
Pythia8

Pythia8

TAUOLA

PHOTOS

PHOTONS++

Interface with external packages for additional features

▪ HepMC for writing events in HepMC format (mandatory)

▪ Pythia8 for decays of generic quark configurations (optional)

▪ TAUOLA for decays of 𝜏 particles (optional)

▪ PHOTOS for final-state photon radiation (FSR) (optional)

▪ PHOTONS++ for final-state photon radiation (FSR) (optional)

9

𝐵+
𝜏+

ഥ𝐷0

𝜸

TAUOLA

EvtGen

FSR

𝐾+

𝜋−

𝜋+

𝜈𝜏

ҧ𝜈𝜏

Inconsistencies can result from mixing other (typically Pythia) hadron
models into another generator's decay chains (and unresponsive to tunes)

https://hepmc.web.cern.ch/hepmc
https://pythia.org/
https://pythia.org/
https://tauolapp.web.cern.ch/tauolapp
https://arxiv.org/abs/1011.0937
https://doi.org/10.1088/1126-6708/2008/12/018

EvtGen decay algorithm

10

Parent particle ID and
4-momentum

Determine full decay chain

Accept/reject to determine
kinematics according to

dynamics model

Determine properties of all
particles in decay chain

Input

Provide simulated decay chain

Output

Input from data base

Input from decay file (and decay table)

evt.pdl

decay.dec

Decay files and decay table

Pythia8

Decay files determine the decay chain

▪ Specify decay modes and their branching fractions

▪ Specify decay models and their input parameters

▪ Can be provided as text (.dec) or XML file

EvtGen maintains a generic decay table (DECAY.dec) with properties of ∼ 104 explicit decays

▪ Updated from PDG at intervals (nontrivial effort)

▪ When known branching fractions do not add up to 100%

 Fill up remainder with generic quark configurations and pass to Pythia8

 𝑏-baryons rely more on Pythia8 than other particles

11

https://linkinghub.elsevier.com/retrieve/pii/S0010465508000441

Decay table and custom IDs

▪ General Decay table does not consider
uncertainties in branching fractions

▪ Each user can have custom general Decay table

▪ Currently no possibility to provide uncertainty
or weighting variation for decays

▪ Challenges: Inconsistencies, PDG BFs not adding
up to 1, theory uncertainties (form factors, etc)

▪ Particle ID standards: some particle IDs used in
EvtGen are outside the standard range

▪ First step would be to support alternative BFs

12

Example from general Decay table

Interface between
EvtGen and Pythia

▪ EvtGen calls Pythia to decay and
hadronise quark configurations in
some cases

▪ Nothing to be put into the event
record before Pythia simulation

▪ Direct translation of EvtGen objects
into Pythia event (and back)

▪ Needs interplay between generators
(making sure to avoid double counting)

▪ Needs matching of particle properties
and decay table.

13

Example from general Decay table

Studies of final-state radiation

14

Alternatives for final-state radiation

▪ FSR is main limitation to exploit multi-threading

▪ Find alternatives to study systematic effects

 Especially those associated with interference effects

15

EvtGen simulation

𝑫𝟎 → 𝑲+𝝅− simulation with PHOTOS

See HFLAV Sec 11.3

stat. syst. FSR

No int v2.02
With int. v2.02
With int. v2.15

Hyperthreading

https://arxiv.org/pdf/2206.07501

Final-state radiation in EvtGen

▪ EvtGen relies on external specialised generators to add QED
FSR corrections

▪ Generators generally treat the effect of FSR as a
multiplicative correction to the decay rate

16

dΓradiative = dΓBorn 𝑓 𝛷 d𝛷

𝛷: Phase-space of photons

PHOTOS

PHOTONS++

Vincia

▪ Generators add photons (accept/reject) based on 𝑓 𝛷

▪ Default generator is PHOTOS

▪ Recently included Sherpa’s PHOTONS++ as alternative

▪ Currently developing Vincia (inside Pythia8) as alternative

𝐵+
𝜏+

ഥ𝐷0

𝜸

EvtGen

FSR

𝐾+

𝜋−

𝜋+

𝜈𝜏

ҧ𝜈𝜏

PHOTOS flag deprecated with
FSR flag in EvtGen r3.X.X

https://arxiv.org/abs/1011.0937
https://doi.org/10.1088/1126-6708/2008/12/018
https://pythia.org/latest-manual/Vincia.html

Sherpa’s PHOTONS++ for FSR

▪ PHOTONS++ in Sherpa can simulate emission of soft photons
based on YFS approximation (mode 1)

▪ If switched on also hard photons based on collinear
approximation (mode 2)
▪ Approx. matrix-element corrections (mode 20) or

▪ Exact matrix-element corrections (mode 21)

▪ With mode 1: fewer hard photons compared to PHOTOS
(PHOTOS has matrix-element corrections implemented)

▪ With mode 2: generally good agreement with PHOTOS

 Implemented switches for systematic studies

17

Amount of radiated energy

𝐽/𝜓 → 𝜇+𝜇−

𝐽/𝜓 → 𝑒+𝑒−

New in EvtGen R03-00-00-beta1!

https://iopscience.iop.org/article/10.1088/1126-6708/2008/12/018
https://iopscience.iop.org/article/10.1088/1126-6708/2004/02/056
https://gitlab.cern.ch/evtgen/evtgen/-/tags

▪ Vincia is embedded in Pythia8

▪ Algorithm implementation enables thread safety

▪ Developed EvtGen  Vincia interface based on
existing dependency with Pythia8

 To be added to release (once in Pythia8 release)

Vincia QED shower for FSR

▪ Vincia parton shower evolution based on
Antenna approximation (can be interleaved)

▪ Recently adapted to radiate off hadrons
(previously supporting only leptons)

▪ Matrix-element corrections (MECs) in progress

 Currently implementing and validating

 Preliminary results look promising

18

Technical aspects

Amount of radiated energy

Angular distribution of photons

𝐽/𝜓 → 𝑒+𝑒−

𝐽/𝜓 → 𝑒+𝑒−

With Giacomo Morgante and Peter Skands @ Monash

https://doi.org/10.1016/j.physletb.2020.135878

Interfaces between EvtGen and Plugins

▪ Each decay-chain node translated

▪ Into intermediate HepMC events (for PHOTOS)

▪ Directly into Sherpa or Pythia objects (for Photons and Vincia)

▪ EvtGen random number propagated (full seed control)

▪ PHOTOS and Sherpa’s PHOTONS++ not thread-safe yet  mutex

▪ Need to mutex also HepMC translation (for PHOTOS)

19

EvtGen particle with
daughters

Decay translation

Update EvtGen particles
if photons radiated

Generate radiation in plugin

Workflow

Review (for Sherpa) by Marek Schönherr and Frank Krauss

Initialisation of afterburners

20

▪ For external dependencies EvtGen creates full
Pythia/Sherpa objects

▪ Would be useful to initialise only needed objects
(shower/soft-photon handler)

▪ Example: Sherpa’s initialisation takes as much
time as ~104 decay events

▪ Several initialised objects are not used

Static destructor fiasco
When generators have static instances the destruction order is undefined (C++ issue)

21

Our current solution

Comparisons between generators

▪ Good agreement (within ~10%) for energy and angular distributions

▪ All generators radiate more photons that PHOTOS

22

𝐽/𝜓 → 𝑒+𝑒−

Amount of radiated energy Number of photons Angular distribution of photons

Comparisons between generators

▪ Energy range above 𝑀𝐽𝜓/2 kinematically accessible for events with more than one photon

23

𝐽/𝜓 → 𝑒+𝑒−

Amount of radiated energy

𝑁 𝛾FSR = 1 𝑁 𝛾FSR = 2 𝑁 𝛾FSR = 3

Comparisons between generators

▪ Good agreement (within ~10%) for energy and angular distributions

▪ All generators radiate more photons that PHOTOS

24

Reject photons with ΔR = Δ𝜂2 + Δ𝜑2 < 0.1 and 𝐸𝛾 < 0.1 MeV

𝐽/𝜓 → 𝑒+𝑒−

Amount of radiated energy Number of photons Angular distribution of photons

A word on timing
▪ Compare simulation time using 𝐽/𝜓 → 𝑒+𝑒− decay as benchmark

 Collinear singularities enhanced due to small electron mass

25

 Largest consumption by exact matrix-element calculation

 Good precision/time trade-off for option 20 (will use as default)

 Potential speedup using Vincia or PHOTONS by about factor 4

Another word on timing
▪ Compare simulation time when simulating generic Υ 4𝑆 → 𝐵 ത𝐵

 Benchmark for general use

26

 No large difference between PHOTONS options in generic case

 Potential speedup using Vincia or PHOTONS by about factor 2

Performance with multithreading

27

 Better performance with new FSR alternatives

 Deeper structural changes needed to fully exploit multithreading with increased memory sharing

Ideas for future FSR generation

▪ FSR added by passing decay tree step-by-step
(node-by-node) to the FSR generators

▪ Prototyped EvtGen  Vincia interface using
existing Pythia dependency (step-by-step)

▪ Aim to propagate full decay chain to Vincia to
simulate radiation standalone

▪ Could simulate interference and resonance
interleaving effects

28

𝐷0 → 𝐾−𝜋+

Spin-info propagation for 𝜏 decays

29

Plugins for 𝜏 decays

▪ EvtGen  TAUOLA interface based on HEPMC

▪ Spin-state information of 𝜏 not propagated
▪ TAUOLA reconstructs spin info from ancestors

▪ Needed for analyses sensitive to 𝜏 polarization

▪ Simulation of 𝜏 decays with spin-state propagation possible with
PYTHIA8 using HME (helicity-matrix element) model

 Prototyped EvtGen  Pythia interface
with spin-density matrix propagation

▪ Generalisation of helicity/spin basis conversion has turned out
challenging (but wish to continue work)

30

𝐵+ → 𝜏+ → 𝜋+ ҧ𝜈𝜏 𝜈𝜏

𝐵+ → 𝜏+ → 𝜇+𝜈𝜇 ҧ𝜈𝜏 𝜈𝜏

Snippet from Herwig

31

Custom interfaces are
efficient but need to
align details about
frame/conventions

EvtGenInterface.cc

https://gitlab.com/hep-mirrors/herwig/-/blob/master/Decay/EvtGen/EvtGenInterface.cc

Snippet from Herwig

32

Snippet from Herwig

33

EvtGenInterface.h

https://gitlab.com/hep-mirrors/herwig/-/blob/master/Decay/EvtGen/EvtGenInterface.h

Summary and discussion

34

▪ Decay weighting: feasible based on alternative BFs, different models/params challenging

▪ FSR: introduced new alternative using Sherpa’s PHOTONS++

▪ FSR: Vincia under development (envisaged plans for full decay-chain propagation)

▪ 𝜏 decays: check interface between HERWIG EvtGen

▪ We can revisit particle ID definitions, but must coordinate with experiments

▪ Possibility of a "bidirectional" API between main generator and specialist afterburners?

General

EvtGen

	Slide 0: Interfacing to specialized tools
	Slide 1: Outline
	Slide 2: Introduction
	Slide 3: Simulation in high-energy physics
	Slide 4: The EvtGen generator
	Slide 5: Physics motivation
	Slide 6: Decay Chains
	Slide 7: Decay amplitudes
	Slide 8: Decay models
	Slide 9: External dependencies
	Slide 10: EvtGen decay algorithm
	Slide 11: Decay files and decay table
	Slide 12: Decay table and custom IDs
	Slide 13: Interface between EvtGen and Pythia
	Slide 14: Studies of final-state radiation
	Slide 15: Alternatives for final-state radiation
	Slide 16: Final-state radiation in EvtGen
	Slide 17: Sherpa’s PHOTONS++ for FSR
	Slide 18: Vincia QED shower for FSR
	Slide 19: Interfaces between EvtGen and Plugins
	Slide 20: Initialisation of afterburners
	Slide 21: Static destructor fiasco
	Slide 22: Comparisons between generators
	Slide 23: Comparisons between generators
	Slide 24: Comparisons between generators
	Slide 25: A word on timing
	Slide 26: Another word on timing
	Slide 27: Performance with multithreading
	Slide 28: Ideas for future FSR generation
	Slide 29: Spin-info propagation for tau decays
	Slide 30: Plugins for tau decays
	Slide 31: Snippet from Herwig
	Slide 32: Snippet from Herwig
	Slide 33: Snippet from Herwig
	Slide 34: Summary and discussion

