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Disclaimers

e I'm more an “experienced” user of ML techniques rather than an expert
e Al/ML is sprouting in the HEP field, today’s talk based on a selection of architectures and
techniques




How is Machine Learning used in ATLAS?
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Two main general use cases:

e Classification: Separating different classes of data (e.g. signal vs background), outputs are
classification scores

e Regression: Compute underlying variables, outputs are estimations of those variables values



Assessing the results

Different metrics for assessing model’'s performance

e Classification:
o Most common looking at ROC Curves (Receiver Operating Characteristics)
o Also Precision and Recall which can be more useful for imbalanced classes
e Regression: Mean Absolute error, Root Mean Square error etc.



What can go wrong: Over-fitting

When it models the training data too well, e.g., learns the detail and noise in the training data to the
extent that it negatively impacts the performance on new data

This means that the noise or random fluctuations in rnaimting o | s st o | Yoy o i
the training data is picked up and learned as e

concepts by the model

Regression
illustration

Not an exact agreement for what level of
over-fitting is acceptable (Usually expect training
performance to be a bit better than test set)

Classification
illustration




Cross validation

When actually using the model, ensure that a given data/MC event is not being evaluated with a
model for which that event was part of the training data (otherwise will have a bias)

Common way to avoid this is to use a cross validation setup - split data into folds and train
multiple models (each with same hyperparameters, input features etc)

For final analysis events evaluated using a model for which it was not part of the training
This ensures the performance of the different models is consistent (otherwise possible

indication of problematic over-fitting) Train Validate/Test Evaluate
(after neural network optimization)
NN1 Set A Set B Set C
(33 % of Events) (33 % of Events)

Set B Set C
NN2 (33 % of Events) (33 % of Events)

Set C Set A Set B
NN3 (33 % of Events) (33 % of Events)




Which Machine Learning tools are used in ATLAS?

e Boosted Decision Trees (BDTs): Series of individual decision trees making cuts on input
values to produce high-purity ‘leaves’. Subsequent trees are trained on the residuals of the
previous tree (Boosted). This is controlled by the “learning rate” parameter

e Neural Networks: Deep (DNN), Recurrent (RNN), Parametric (PNN), Transformer, Graph
(GNN) Hidden

node Input




A word on Transformers Attention is all you need

e ‘“Attention-based "Transformer architectures are now state of the art on many tasks in HEP
and in natural language processing

e |nvariant with respect to the order of the input sequence (e.g. jets 4-vectors + flavour tagging
information)

e \Very effective at modeling variable-length sets because they can learn combinatorial
relationships between set elements with a polynomial run-time

e Usually trained to predict the probability of an event to be from a signal or from a background
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https://arxiv.org/abs/1706.03762

How is Machine Learning used in ATLAS?

Vast number of applications, including object reconstruction and identification!

Simulation -> Improve CPU performances against Geant4

Jet flavour tagging using Graph Neural Networks (GNN) to discriminate heavy flavour jets (b-

or c-jets) from light flavours

Other object reconstruction (e.g. electrons, photons, taus) to improve their performances

Re-analysis of ATLAS data -> providing tighter constraints on the analysis parameters
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Jet Flavour Tagging leading the revolution

1992: Multi Layered Perceptron at LEP
2006: First ML flavour tagging tool at a hadron collider at DO
2007: NNs for FTAG at CDFE

2012-2017: ATLAS developing BDT based MV1 and MV2
2017-2019: CMS uses deep learning with DeepCSV
2017-2021: ATLAS is back to RNN and DNN DL1r and DL1d
2019-: CMS used ParticleNet

2021-: ATLAS moved to GN1/GN2



https://inis.iaea.org/records/s0rhp-89p14
https://inspirehep.net/literature/736788
https://www.sciencedirect.com/science/article/abs/pii/S0920563207003830
http://cds.cern.ch/record/1741020/files/ATLAS-CONF-2014-046.pdf
https://arxiv.org/abs/1712.07158
https://cds.cern.ch/record/2273281
https://arxiv.org/abs/1902.08570
https://cds.cern.ch/record/2811135/files/ATL-PHYS-PUB-2022-027.pdf

Jet Flavour Tagging leading the revolution  cn1 paper

DLA1r (left): Uses “Low-level” algorithms using tracks to reconstruct a particular aspect of the
experimental signature of heavy flavour jets

GN1 (right): single neural network, directly taking tracks and some jet information as input, without

depending on other algorithms rﬂj
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https://cds.cern.ch/record/2811135

Constructing the FTAG discriminants

GN1 paper

The high-level algorithms calculate the probabilities for each flavour class: pb (b-jets), pc (c-jets)

and pl (light-jets)

Pc

Pb
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(1= fe)pi+ fepe
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distribution to higher values of Db
(regions with the best
discrimination)
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https://cds.cern.ch/record/2811135

The “boosted” variant Xbb/Xcc tagger paper

A similar architecture can be exploited for Lorentz boosted H->bb tagging
GN2X achieves a background rejection factor of 40 for jets from top-quark decays and 300 for

multijet event DONX _ ln( PHbb )
Hbb chc * PHcee + ftop * Ptop + (l = chc = ftop) * PQCD
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-021/

Fast Simu|ation ATLAS Run3 software paper

Geant4 “Full detector Simulation” requires considerable CPU resources

Faster simulation methods (AtlFast3) replaces the calorimeter shower simulation (most
CPU intensive step) tackling the slow propagation and interactions of incident particles
with the direct generation of energy deposits in the calorimeters:

e the simulation of hadrons, photons and electrons in the calorimeters is handled by a
combination of two fast simulations tools; FastCaloSimV2, using a parametric
approach, and FastCaloGAN, which uses generative adversarial networks (GANSs)

e FastCaloGAN is among the first tools based on generative models used for
production in a large HEP experiment

15


https://arxiv.org/abs/2404.06335

ATLAS Run3 software paper

Fast Simulation

AtlFast3 requires only 20% of the CPU of the full simulation

LG Calorimeters LAl
Detector Spectrometer

FastCaloGAN V2 FastCaloSim V2
Exin> 16 GeV && |n| < 2.4,

Ein< 8 GeV && || < 2.4,
Except [0.9<|n|<1.1, 1.35<|n|<1.5] | All Eun 8& [0.9<]n[<1.1, 1.35<|n|<1.5, |n]>2.4]

Charged FastCaloSim V2 | FastCaloGAN V2
Ekin > 8 GeV && |n| < 1.4,

Pions Geantd | &-<4cevsam<ia,
Eiin<1GeV && | <315 | Exn>2 GeV 8& 1.4 < |n| < 3.15, Muon
Al Exin 8& 0] > 3.15

Kaons -
Eun < 200 MoV Punchthrough
+ Geant4

Other hadrons:
Baryons Ein < 400 MoV FastCaloGAN V2

Geant4
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https://arxiv.org/abs/2404.06335

Fast Simulation in Higgs analyses and beyond
ATLAS Run3 software paper AtlFast3 perfomance paper

Fast Simulation tools are very useful when simulating complicated signals (e.g. di-Higgs, X->SH,
BSM processes)

:_‘\ 5000/— | I I I ]

S L ATLAS Simulation Preliminary 4 o W7 T T T T T T g
= = ¥ . . . . —
3 - 200 WLCG jobs 7 N o008 v 7 ATLAS Simulation Preliminary —
B b —_ = v N =
= - I AF3 Fast Simulation (5k evt./job) . < [ E ¥ Bm o Vs=13.6 TeV, 1.8<p <2.5 TeV,R 1.0 jets =
— — e [ ] =
@ 4000F Full Simulation (2k evt./job) ] £ oo . = e G4 E
@ [ ) 2 Y Ly —=— Hybrid e
9] B . = 005 b v Ea — FastCaloSim V2 —
I 3000 — c = . 3
= B ] 5 oM ; ¢l — FastCaloGAN V2 =
2000— — = =
I - - . . 3 = —
L 2 2 2 < 9 @ | = &

1) ) ] )] ) © —

o= ke ke ke ke o < 4E

1000—  x x x x x o— () ==

- — [s2] M~ N » < 4 < E

L (a9} [ep] (e} < M~ - | L(E E_
o K .| !I !I !I !; < U ° 10 15 20 25 ] 30
0——23 o Moy, Ootoge, lotspuy ot e, s Leading-Jet Number of Constituents

o “eog ’ -760‘400 S1g Te:/A 2Tey

17


https://arxiv.org/abs/2404.06335
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2023-004/

Analysis Showcase

- VH (H->bb) legacy arXiv:2410.19611
- ttH (H->bb) legacy arXxiv:2407.10904
- Resonant X->SH->bbyy JHEP 11 (2024) 047

Recent publications which involve interesting ML tools

Many interesting ATLAS result available here:
https://twiki.cern.ch/twiki/bin/view/AtlasPublic

legacy
analysis

[legost o' nzlisis] adjective

Re-analysis of a previous publication with
improved object reconstruction and novel
analysis techniques to provide improved
sensitivity.
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https://arxiv.org/abs/2410.19611
https://arxiv.org/abs/2407.10904
https://link.springer.com/article/10.1007/JHEP11(2024)047
https://twiki.cern.ch/twiki/bin/view/AtlasPublic

VHbb/cc legacy analysis

e Probing the Yukawa coupling in the quark sector is a cornerstone of the LHC programme
e Measuring the coupling to the b-quark is reaching the precision era!
e Growing interest in the coupling towards the 2nd generation quarks: accessible by the LHC?

Study associate production of H->bb and H->cc and a leptonically decaying vector boson (V=W, 2)
to avoid vast hadronic jets background: three lepton final states (0-, 1-, 2-leptons)

19



Previous VHbb/cc publications
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https://arxiv.org/pdf/2007.02873.pdf
https://arxiv.org/pdf/2008.02508.pdf
https://arxiv.org/pdf/2201.11428.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-051/

VHbb/cc legacy analysis

Flavour

tagging VH(cc)
Vv
13 ” V.
Resolved”: c-tagging *H
R=0.4 jets for
flavour tagging
b-taggi V -
-tagging '~J-.|.
75 GeV 150 GeV 250 GeV

400 GeV

“Boosted”

R=1 jet and check
the variable-R (VR)
track-jets for
flavour tagging

Flavour Tagging and the vector boson transverse momenta used to characterise the analysis



VHbb/cc Legacy improvements

The legacy analysis makes use of the strategies from the previous publications but also includes
some R&D:

e Particle flow jet collections (combining tracking and calorimeter information)
o Improved energy and angular resolution of jets compared to techniques that only use
the calorimeter in the central region of the detector
e Introduced a BDT-based MVA technique in the boosted VHbb and VHcc regimes
e Switch to DL1r flavour tagging algorithm (MV2c¢c10 before)
o  Switching from BDT to RNN
o New variables to enhance the signal-background discrimination
e Novel techniques to estimate the modelling uncertainties

22



Flavour tagging (resolved VHbb + VHcc)

c-tag score

Fundamental ingredient for this analysis

c-tight (Cr)

b-jet: 4.8% B

H H -jet: 24%
2D pseudo-continuous flavour tagging scheme . P —
e-elficiency c-loose (Cp) b-60-70% b-60%
b-jet: 12% b-jet: 11% b-jet: 58%
DLlrb =1In Pb c-jet: 21% c-jet: 5.2% c-jet: 2.7%
fc Pec+ ( - fc) Pu 45% light-jet: 6.5% light-jet: 0.13% light-jet: 0.05%
c-efficiency Untagged (N)
Pe b-jet: 15%
DLlrc =In c-jet: 48%
beb + (1 - fb)pu light-jet: 92%

70% 60% b-tag score
b-efficiency b-efficiency

p, is the flavour probability given by the DL1r algorithm
fy is the effective y-jet fraction in the background hypothesis (f, = 0.018 and f_ = 0.3)
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Flavour tagging (boosted VHbb)

e Using VR track-jets as b-tagging input, using the standard Pseudo Continuous b-tagging
(PCBT) calibration scheme

e Moved to DL1r at 85% WP; It was MV2c10 at 70% before (better c-/light-jet rejection, so to
cover more signal events in the low statistics boosted region without increasing too much

background events)
e Switch from m_, to MVA score as final discriminant provides better signal and background

separation power (improving the significance by ~50%)
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The taggings

Direct tagging (DT): Cut-based method based on the jet score. Causing a lack in statistics in
some phase space regions, so they cannot model the background effectively, leading to a large
MC statistical uncertainty

Truth tagging (TT): reweight events based on their probability to pass tagging requirement.
Showed a reasonable good closure with the direct tagged distribution -> estimated with a GNN

Hybrid tagging (HT): DT b-jets and then TT the other flavours. Chosen to maximise the TT
benefits and reduce the potential impact from the observed slightly non-closure

VHbb resolved VHbb boosted VHcc
Hybrid tagging Yes (b-jets are DT’d) | No (fully TT’d) | Yes (b-jets are DT’d)
Truth tag WP 70% b & 70% b 85% b & 85% b c-tight & c-tight
MC stat. % for TT regions 100% 100% 8%
V+jets hybrid tagged truth tagged hybrid tagged
single-top hybrid tagged truth tagged hybrid tagged
1t direct tagged truth tagged direct tagged
diboson direct tagged truth tagged direct tagged
signal direct tagged truth tagged direct tagged
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Shape uncertainties: CARL

e Shape systematic uncertainties quantify the effects on the shape of the final fitting
discriminant when comparing different MC samples (e.g. nominal and alternative)

e Calibrated Likelihood Ratio Estimator (CARL): a DNN to reweigh the nominal sample to make
it look like the alternative sample to have shape uncertainties that are less susceptible to
statistical fluctuations. This replaces BDT reweighting

e Inputs: all MVA variables + a few additions

e The reweighted nominal sample is then used as the CARL shape uncertainty

Nominal fy(x) Alternative f4(x) A

fu(x)
F(X) ' A e, (%)

p.d.f.

p.d.f.

xY
xV
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Data/(S+B)

VHbb/cc legacy analysis - Results

Background composition BDT output for 2L boosted VHbb  Yields as a function of log(S/B)

Background fraction
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VHbb/cc legacy analysis - Results

Good agreement with the SM. Individual production of WH and ZH established with observed
(expected) significances of 5.3 (5.5) and 4.9 (5.7). Observation of WH(H->bb) production!
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VHbb/cc legacy analysis - Signal strength

w,=0.91+0.10 (stat.) £ 0.12 (syst); n_, = 1 + 4 (stat.) £ 3.6 (syst), corresponding to an observed
(expected) upper limit of 11.3 time the SM predictions at the 95% CL

Old New

B e LA B B B BN [ e — LS A B B DL B B
s> F ATLAS Preliminary ] ATLAS — Observed
3 ooF 4 ATLAS (RS 1 ---- Expected
E Vs=13TeV, 140 fo" : N Vs=13 TeV, 140 fb
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- VH, H— bb/ct E S, Expected VH, H — bb/ct [ Expected + 26
15¢ R E VH, H—ct —— Observed peciac=
- T e [ 0 lepton
i ] e
E . .= S.= X
5 - Obs.- 35 x SM
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i ERe S
- 4 Xp.= X S.= X
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E ER D | 2 lepton
1o ERL - e
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More than a factor 2 improvement
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kappa-framework

Best fit values interpreted in the kappa-framework as coupling modifiers k, and k
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ttH (H->bb) legacy analysis

e Provides direct access to the top Yukawa coupling (Only ~1% of Higgs production XS)
Semi-leptonic decay of one (two) tops offer distinctive final signature in the single (dilepton)
channel, avoiding multi-jet QCD background

e Studied in the single- and di-lepton channels (based on the W-boson decays)
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ttH (H->bb) legacy analysis

e Exposed to irreducible tt+2b background
e First Run 2 results had a low overall inclusive signal strength. Dominated by modelling

Pre-fit impact on p: Au
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ttH (H->bb) legacy improvements

PFlow jets and DL1r b-tagger

Loosened pre-selection for increase stats

Higgs reco and classification done with Transformer NN with particle 4-vector inputs
Additional background CRs

New tt+bb nominal and systematics model developed in 4FS and a new 5FS systematic
model for tt+c and tt+light
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ttH (H->bb) legacy analysis

Higgs reco and classification done with attention based transformers

e Classification transformer to predict the probability for an event to be signal or background

Reconstruction transformer to predict the ID of jets originating from the Higgs: predict which 2

jets most likely from H decay and gets the Higgs pT from combining jet four-vectors
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ttH (H->bb) legacy analysis d; = pi

Zi¢j Pj-Nij
Classification transformer: Probability p. of a network class i is converted into a discriminant d. in
order to maximise the separation between the class and all the other classes (i # j), to yield a
similar number of events in the control regions, and to maximise sensitivity.
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ttH (H->bb) legacy analysis
Observed (expected) significance: 4.6 (5.4)6 (was 1.0 (2.7) ¢ in the previous Run 2 analysis)

e Factor 2 improvement in expected sensitivity w.r.t. previous analysis
e Limited by systematic uncertainties
e STXS measurement compatible with SM p-value of 89%

Most precise single channel XS measurement for both inclusive and differential!
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X->SH->bbyy analysis
A search for the resonant production of a heavy scalar X decaying into a Higgs boson and a new
lighter scalar S, through X — S(—bb)H (—yy)

161 signal mass points are generated in the range 170 GeV < m, <1000 GeV and 15 GeV < mg <
500 GeV.

The number of h-tagged jets is used to categorise events in two regions, requiring 1 or 2 b-tagged

jets. The signal events contain the characteristic H — yy b
decay with the myy distribution peaking around the 9 S - <
Higgs boson mass at ~125 GeV. x b
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X->SH->bbyy analysis

e Parameterised neural networks (PNNs), which take input a vector of event characteristics and
a vector of phase space parameters (8). Yields to a function that is parameterised in 6
e Provides a unique discriminant for each signal hypothesis, separating the targeted signal
events from background events
o each value of 6 = (mg , m, ), the PNN() is effectively a different observables
e The PNNs provide sensitivity over the considered mass range and allow interpolation to
values of 8 not explicitly included in the training

=0,

e,

ik O‘: — fufx1,x3)
x=-OR 0-Ox Instead of having 121 NNs you only have
- OB i one parametric NN
3 r’OO/
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Events / bin

Data / Bkg.

X->SH->bbyy analysis

No significant excess with respect to the SM background is found. 95% CL upper limits are set in

the ranges 170 GeV < m, <1000 GeV and 15 GeV < mg < 500 GeV

The largest deviation from the background-only expectation occurs for (m,, my) = (575, 200) GeV

with a local (global) significance of 3.5 (2.0) standard deviations
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Neu ral Network preservation Les Houches quide to reusable

ML models in LHC analyses

With the increasing usage of machine-learning in high-energy physics analyses, the publication of
the trained models in a reusable form has become a crucial question for analysis preservation and
reuse the ML model defines the analysis output, so that re-interpretability of the analysis directly
depends on the reusability of the ML model

Open Neural Network Exchange (ONNX) as best tool for NN preservation, but not every framework
provides ONNX files, in some cases the conversion is non-trivial

Les Houches guide to reusable ML models in LHC analyses

Jack Y. Araz!, Andy Buckleyz, Gregor Kasieczka®, Jan Kieseler®, Sabine Kraml®, Anders Kvellestad®,
Andre Lessa’, Tomasz Procter®, Are Raklev®, Humberto Reyes-GonzalezS’g’m, Krzysztof Rolbieckill,
Sezen Sekmen'?, Gokhan Unel*?
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Neu ral Network preservation Les Houches quide to reusable

ML models in LHC analyses

The long-term stability of the preservation format needs to be addressed. It is useful to advertise
the exact software versions used to produce, save and run the neural network

On the reinterpretation tools side, all the major frameworks (CheckMATE, GAMBIT’s Collider-Bit,
MadAnalysis 5, Rivet, and ADL/CutLang) have developed interfaces for using published ML
models. This was extensively discussed at the last two workshops of the Reinterpretation
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Summary and outlook

Many analyses, simulation and reconstruction activities are using complex ML methods using
low-level event information (tracks, vertices, etc.)

Tools are now easier to use/more streamlined than ever before, with several tutorials available
However, ML tools are vulnerable to biases/bugs than more conventional methods

Still a lot to gain from studying Run-2 data! “Legacy” measurements showed significant
improvements, mostly coming from updated ML techniques

Thanks for your attention!
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Backup
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Sequential vS Functional NNs

Sequential Neural Networks

A sequential neural network is a linear stack of layers, organized in a sequence. Each layer has
exactly one input tensor and one output tensor. This type of model is quite straightforward and
ideal for tasks where the data flows in a single direction from input to output without any need for
more complex connections.

Functional Neural Networks

The functional API, on the other hand, allows for the creation of complex architectures, like
multi-input/output models, shared layers, and models with non-linear topology. It's much more
flexible and can handle more sophisticated designs.
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Attention is all you need

Dynamically weights the importance of different input parts, allowing the model to focus on the most relevant
sections when making predictions.

1. Input Representation: The model processes input data (e.g., a sentence or an image) and generates a set
of intermediate representations (often called "keys").

2. Query: For each part of the input sequence that the model is currently processing, it generates a "query"
vector.

3.  Weight Calculation: The query is compared with each key using a similarity function (like dot product). This
generates a set of weights (or attention scores) that indicate the importance of each input part.

4. Weighted Sum: The weights are then used to compute a weighted sum of the input representations,
emphasizing the most important parts.

5. Output: The weighted sum is then used as the input for the next step in the model.

In machine translation, an attention mechanism allows the model to focus on different parts of the input sentence
while generating each word of the output sentence. This improves the quality of translations, especially for longer
sentences.
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Attention is all you need

Types of Attention Mechanisms

e Self-Attention: Used within the same sequence to compute the relationships between
different positions. It's the backbone of the Transformer architecture.

e Cross-Attention: Computes relationships between different sequences, often used in tasks
where the input and output sequences are different, like in translation.

Benefits

e Handling Long Sequences: Attention helps models manage long sequences without the
issues of vanishing gradients.

e Improved Interpretability: By visualizing attention weights, one can often interpret which parts
of the input the model is focusing on.

e Flexibility: It can be applied in various domains like text, images, and even audio.
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A word on Transformers
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independent jet embeddings to produce latent space representations for each jet
a central stack of transformer encoders
additional transformer encoders for each particle
a novel tensor-attention to produce the jet-parton assignment distributions.
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