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Outline

● Overview of Machine Learning (ML) techniques in ATLAS
● Historical facts and ML evolution throughout the years
● Examples in particle reconstruction and simulation
● Selected analyses 
● Preservation
● Summary and outlook
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Disclaimers

● I’m more an “experienced” user of ML techniques rather than an expert
● AI/ML is sprouting in the HEP field, today’s talk based on a selection of architectures and 

techniques
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How is Machine Learning used in ATLAS?

Two main general use cases:

● Classification: Separating different classes of data (e.g. signal vs background), outputs are 
classification scores

● Regression: Compute underlying variables, outputs are estimations of those variables values

Input variables Output scores
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Assessing the results

Different metrics for assessing model’s performance

● Classification:
○ Most common looking at ROC Curves (Receiver Operating Characteristics)
○ Also Precision and Recall which can be more useful for imbalanced classes

● Regression: Mean Absolute error, Root Mean Square error etc.
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What can go wrong: Over-fitting
When it models the training data too well, e.g., learns the detail and noise in the training data to the 
extent that it negatively impacts the performance on new data

This means that the noise or random fluctuations in 
the training data is picked up and learned as 
concepts by the model

Not an exact agreement for what level of 
over-fitting is acceptable (Usually expect training 
performance to be a bit better than test set)
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Cross validation
When actually using the model, ensure that a given data/MC event is not being evaluated with a 
model for which that event was part of the training data (otherwise will have a bias)

● Common way to avoid this is to use a cross validation setup - split data into folds and train 
multiple models (each with same hyperparameters, input features etc)

● For final analysis events evaluated using a model for which it was not part of the training
● This ensures the performance of the different models is consistent (otherwise possible 

indication of problematic over-fitting)
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Which Machine Learning tools are used in ATLAS?

● Boosted Decision Trees (BDTs): Series of individual decision trees making cuts on input 
values to produce high-purity ‘leaves’. Subsequent trees are trained on the residuals of the 
previous tree (Boosted). This is controlled by the “learning rate” parameter

● Neural Networks: Deep (DNN), Recurrent (RNN), Parametric (PNN), Transformer, Graph 
(GNN)
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A word on Transformers

● “Attention-based ”Transformer architectures are now state of the art on many tasks in HEP 
and in natural language processing

● Invariant with respect to the order of the input sequence (e.g. jets 4-vectors + flavour tagging 
information)

● Very effective at modeling variable-length sets because they can learn combinatorial 
relationships between set elements with a polynomial run-time

● Usually trained to predict the probability of an event to be from a signal or from a background 
enriched region
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Attention is all you need

https://arxiv.org/abs/1706.03762


How is Machine Learning used in ATLAS?

Vast number of applications, including object reconstruction and identification!

● Simulation -> Improve CPU performances against Geant4
● Jet flavour tagging using Graph Neural Networks (GNN) to discriminate heavy flavour jets (b- 

or c-jets) from light flavours
● Other object reconstruction (e.g. electrons, photons, taus) to improve their performances
● Re-analysis of ATLAS data -> providing tighter constraints on the analysis parameters
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Jet Flavour Tagging leading the revolution

● 1992: Multi Layered Perceptron at LEP
● 2006: First ML flavour tagging tool at a hadron collider at D0
● 2007: NNs for FTAG at CDF
● 2012-2017: ATLAS developing BDT based MV1 and MV2 
● 2017-2019: CMS uses deep learning with DeepCSV
● 2017-2021: ATLAS is back to RNN and DNN DL1r and DL1d
● 2019-: CMS used ParticleNet
● 2021-: ATLAS moved to GN1/GN2
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https://inis.iaea.org/records/s0rhp-89p14
https://inspirehep.net/literature/736788
https://www.sciencedirect.com/science/article/abs/pii/S0920563207003830
http://cds.cern.ch/record/1741020/files/ATLAS-CONF-2014-046.pdf
https://arxiv.org/abs/1712.07158
https://cds.cern.ch/record/2273281
https://arxiv.org/abs/1902.08570
https://cds.cern.ch/record/2811135/files/ATL-PHYS-PUB-2022-027.pdf


Jet Flavour Tagging leading the revolution

DL1r (left): Uses “Low-level” algorithms using tracks to reconstruct a particular aspect of the 
experimental signature of heavy flavour jets

GN1 (right): single neural network, directly taking tracks and some jet information as input, without 
depending on other algorithms
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Low level

GN1 paper

https://cds.cern.ch/record/2811135


Constructing the FTAG discriminants

The high-level algorithms calculate the probabilities for each flavour class: pb (b-jets), pc (c-jets) 
and pl (light-jets) 
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Similar shapes for 𝑏-, 𝑐- and 
light-jets. GN1 model shifts the 𝑏-jet
distribution to higher values of 𝐷𝑏 
(regions with the best 
discrimination)

GN1 paper

https://cds.cern.ch/record/2811135


The “boosted” variant

A similar architecture can be exploited for Lorentz boosted H->bb tagging
GN2X achieves a background rejection factor of 40 for jets from top-quark decays and 300 for 
multĳet event
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Xbb/Xcc tagger paper

fHcc = 0.02 and ftop = 0.25, following 
an optimisation procedure to 
maximise the rejection for a given 
efficiency

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-021/


Fast Simulation

Geant4 “Full detector Simulation” requires considerable CPU resources

Faster simulation methods (AtlFast3) replaces the calorimeter shower simulation (most 
CPU intensive step) tackling the slow propagation and interactions of incident particles 
with the direct generation of energy deposits in the calorimeters:

● the simulation of hadrons, photons and electrons in the calorimeters is handled by a 
combination of two fast simulations tools; FastCaloSimV2, using a parametric 
approach, and FastCaloGAN, which uses generative adversarial networks (GANs) 

● FastCaloGAN is among the first tools based on generative models used for 
production in a large HEP experiment 
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ATLAS Run3 software paper

https://arxiv.org/abs/2404.06335


Fast Simulation

AtlFast3 requires only 20% of the CPU of the full simulation

16

ATLAS Run3 software paper

https://arxiv.org/abs/2404.06335


Fast Simulation in Higgs analyses and beyond

Fast Simulation tools are very useful when simulating complicated signals (e.g. di-Higgs, X->SH, 
BSM processes)
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ATLAS Run3 software paper AtlFast3 perfomance paper

https://arxiv.org/abs/2404.06335
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2023-004/


Analysis Showcase

- VH (H->bb) legacy arXiv:2410.19611
- ttH (H->bb) legacy arXiv:2407.10904
- Resonant X->SH->bbyy JHEP 11 (2024) 047

Recent publications which involve interesting ML tools

Many interesting ATLAS result available here:
https://twiki.cern.ch/twiki/bin/view/AtlasPublic 
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https://arxiv.org/abs/2410.19611
https://arxiv.org/abs/2407.10904
https://link.springer.com/article/10.1007/JHEP11(2024)047
https://twiki.cern.ch/twiki/bin/view/AtlasPublic


VHbb/cc legacy analysis

● Probing the Yukawa coupling in the quark sector is a cornerstone of the LHC programme
● Measuring the coupling to the b-quark is reaching the precision era!
● Growing interest in the coupling towards the 2nd generation quarks: accessible by the LHC?

Study associate production of H->bb and H->cc and a leptonically decaying vector boson (V=W, Z) 
to avoid vast hadronic jets background: three lepton final states (0-, 1-, 2-leptons)
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Previous VHbb/cc publications

● Resolved VH(bb) analysis link
● Boosted VH(bb) analysis link 
● VH(cc) analysis & VH(cc) + resolved VH(bb) combination link
● VHbb resolved + boosted combination link 
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https://arxiv.org/pdf/2007.02873.pdf
https://arxiv.org/pdf/2008.02508.pdf
https://arxiv.org/pdf/2201.11428.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-051/


VHbb/cc legacy analysis

Flavour Tagging and the vector boson transverse momenta used to characterise the analysis
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“Resolved”:
R=0.4 jets for 
flavour tagging

“Boosted”
R=1 jet and check 
the variable-R (VR) 
track-jets for 
flavour tagging 



VHbb/cc Legacy improvements

The legacy analysis makes use of the strategies from the previous publications but also includes 
some R&D:

● Particle flow jet collections (combining tracking and calorimeter information)
○ Improved energy and angular resolution of jets compared to techniques that only use 

the calorimeter in the central region of the detector
● Introduced a BDT-based MVA technique in the boosted VHbb and VHcc regimes
● Switch to DL1r flavour tagging algorithm (MV2c10 before)

○ Switching from BDT to RNN
○ New variables to enhance the signal-background discrimination

● Novel techniques to estimate the modelling uncertainties
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Flavour tagging (resolved VHbb + VHcc)

Fundamental ingredient for this analysis

2D pseudo-continuous flavour tagging scheme

px is the flavour probability given by the DL1r algorithm

fy is the effective y-jet fraction in the background hypothesis (fb = 0.018 and fc = 0.3)

23



Flavour tagging (boosted VHbb)

● Using VR track-jets as b-tagging input, using the standard Pseudo Continuous b-tagging 
(PCBT) calibration scheme

● Moved to DL1r at 85% WP; It was MV2c10 at 70% before (better c-/light-jet rejection, so to 
cover more signal events in the low statistics boosted region without increasing too much 
background events)

● Switch from mBB to MVA score as final discriminant provides better signal and background 
separation power (improving the significance by ~50%)
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The taggings
Direct tagging (DT): Cut-based method based on the jet score. Causing a lack in statistics in 
some phase space regions, so they cannot model the background effectively, leading to a large 
MC statistical uncertainty

Truth tagging (TT): reweight events based on their probability to pass tagging requirement. 
Showed a reasonable good closure with the direct tagged distribution -> estimated with a GNN

Hybrid tagging (HT): DT b-jets and then TT the other flavours. Chosen to maximise the TT 
benefits and reduce the potential impact from the observed slightly non-closure
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Shape uncertainties: CARL

● Shape systematic uncertainties quantify the effects on the shape of the final fitting 
discriminant when comparing different MC samples (e.g. nominal and alternative)

● Calibrated Likelihood Ratio Estimator (CARL): a DNN to reweigh the nominal sample to make 
it look like the alternative sample to have shape uncertainties that are less susceptible to 
statistical fluctuations. This replaces BDT reweighting

● Inputs: all MVA variables + a few additions
● The reweighted nominal sample is then used as the CARL shape uncertainty
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VHbb/cc legacy analysis - Results
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Background composition BDT output for 2L boosted VHbb Yields as a function of log(S/B)



VHbb/cc legacy analysis - Results

Good agreement with the SM.  Individual production of WH and ZH established with observed
(expected) significances of 5.3 (5.5) and 4.9 (5.7). Observation of WH(H->bb) production!
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VHbb/cc legacy analysis - Signal strength 

𝛍bb = 0.91 ± 0.10 (stat.) ± 0.12 (syst); 𝛍cc = 1 ± 4 (stat.) ± 3.6 (syst), corresponding to an observed 
(expected) upper limit of 11.3 time the SM predictions at the 95% CL
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Old New

More than a factor 2 improvement



kappa-framework

Best fit values interpreted in the kappa-framework as coupling modifiers kb and kc
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ttH (H->bb) legacy analysis

● Provides direct access to the top Yukawa coupling (Only ~1% of Higgs production XS) 
Semi-leptonic decay of one (two) tops offer distinctive final signature in the single (dilepton) 
channel, avoiding multi-jet QCD background

● Studied in the single- and di-lepton channels (based on the W-boson decays)
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ttH (H->bb) legacy analysis

● Exposed to irreducible tt+2b background
● First Run 2 results had a low overall inclusive signal strength. Dominated by modelling
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Observed (expected) significance: 1.0 (2.7)𝝈



ttH (H->bb) legacy improvements

● PFlow jets and DL1r b-tagger
● Loosened pre-selection for increase stats
● Higgs reco and classification done with Transformer NN with particle 4-vector inputs
● Additional background CRs
● New tt+bb nominal and systematics model developed in 4FS and a new 5FS systematic 

model for tt+c and tt+light
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ttH (H->bb) legacy analysis

Higgs reco and classification done with attention based transformers

● Classification transformer to predict the probability for an event to be signal or background 
● Reconstruction transformer to predict the ID of jets originating from the Higgs: predict which 2 

jets most likely from H decay and gets the Higgs pT from combining jet four-vectors
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ttH (H->bb) legacy analysis

Classification transformer: Probability pi of a network class i is converted into a discriminant di in 
order to maximise the separation between the class and all the other classes (𝑖 ≠ 𝑗), to yield a 
similar number of events in the control regions, and to maximise sensitivity.
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ttH (H->bb) legacy analysis
Observed (expected) significance: 4.6 (5.4)𝝈  (was 1.0 (2.7) 𝝈 in the previous Run 2 analysis)

● Factor 2 improvement in expected sensitivity w.r.t. previous analysis 
● Limited by systematic uncertainties
● STXS measurement compatible with SM p-value of 89%

Most precise single channel XS measurement for both inclusive and differential!
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Old New



X->SH->bbyy analysis

A search for the resonant production of a heavy scalar 𝑋 decaying into a Higgs boson and a new 
lighter scalar 𝑆, through 𝑋 → 𝑆(→bb)𝐻 (→𝛾𝛾)

161 signal mass points are generated in the range 170 GeV ≤ mX ≤ 1000 GeV and 15 GeV ≤ mS ≤ 
500 GeV.

The number of 𝑏-tagged jets is used to categorise events in two regions, requiring 1 or 2 b-tagged 
jets. The signal events contain the characteristic 𝐻 → 𝛾𝛾 
decay with the m𝛾𝛾 distribution peaking around the 
Higgs boson mass at ∼125 GeV.
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X->SH->bbyy analysis

● Parameterised neural networks (PNNs), which take input a vector of event characteristics and 
a vector of phase space parameters (θ). Yields to a function that is parameterised in θ

● Provides a unique discriminant for each signal hypothesis, separating the targeted signal 
events from background events

○ each value of θ = (mS , mX), the PNN(θ) is effectively a different observables
● The PNNs provide sensitivity over the considered mass range and allow interpolation to 

values of θ not explicitly included in the training 
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Instead of having 121 NNs you only have 
one parametric NN



X->SH->bbyy analysis

No significant excess with respect to the SM background is found. 95% CL upper limits are set in 
the ranges 170 GeV ≤ mX ≤ 1000 GeV and 15 GeV ≤ mS ≤ 500 GeV
The largest deviation from the background-only expectation occurs for (mX, mS) = (575, 200) GeV 
with a local (global) significance of 3.5 (2.0) standard deviations
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Neural Network preservation

With the increasing usage of machine-learning in high-energy physics analyses, the publication of 
the trained models in a reusable form has become a crucial question for analysis preservation and 
reuse the ML model defines the analysis output, so that re-interpretability of the analysis directly 
depends on the reusability of the ML model

Open Neural Network Exchange (ONNX) as best tool for NN preservation, but not every framework 
provides ONNX files, in some cases the conversion is non-trivial
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Les Houches guide to reusable 
ML models in LHC analyses

https://arxiv.org/pdf/2312.14575
https://arxiv.org/pdf/2312.14575


Neural Network preservation

The long-term stability of the preservation format needs to be addressed. It is useful to advertise 
the exact software versions used to produce, save and run the neural network

On the reinterpretation tools side, all the major frameworks (CheckMATE, GAMBIT’s Collider-Bit, 
MadAnalysis 5, Rivet, and ADL/CutLang) have developed interfaces for using published ML 
models. This was extensively discussed at the last two workshops of the Reinterpretation
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Les Houches guide to reusable 
ML models in LHC analyses

https://arxiv.org/pdf/2312.14575
https://arxiv.org/pdf/2312.14575


Summary and outlook

Many analyses, simulation and reconstruction activities are using complex ML methods using 
low-level event information (tracks, vertices, etc.) 

Tools are now easier to use/more streamlined than ever before, with several tutorials available

However, ML tools are vulnerable to biases/bugs than more conventional methods

Still a lot to gain from studying Run-2 data! “Legacy” measurements showed significant 
improvements, mostly coming from updated ML techniques
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Thanks for your attention!



Backup
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Sequential vS Functional NNs

Sequential Neural Networks

A sequential neural network is a linear stack of layers, organized in a sequence. Each layer has 
exactly one input tensor and one output tensor. This type of model is quite straightforward and 
ideal for tasks where the data flows in a single direction from input to output without any need for 
more complex connections.

Functional Neural Networks

The functional API, on the other hand, allows for the creation of complex architectures, like 
multi-input/output models, shared layers, and models with non-linear topology. It’s much more 
flexible and can handle more sophisticated designs.
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Attention is all you need
Dynamically weights the importance of different input parts, allowing the model to focus on the most relevant 
sections when making predictions. 

1. Input Representation: The model processes input data (e.g., a sentence or an image) and generates a set 
of intermediate representations (often called "keys").

2. Query: For each part of the input sequence that the model is currently processing, it generates a "query" 
vector.

3. Weight Calculation: The query is compared with each key using a similarity function (like dot product). This 
generates a set of weights (or attention scores) that indicate the importance of each input part.

4. Weighted Sum: The weights are then used to compute a weighted sum of the input representations, 
emphasizing the most important parts.

5. Output: The weighted sum is then used as the input for the next step in the model.

In machine translation, an attention mechanism allows the model to focus on different parts of the input sentence 
while generating each word of the output sentence. This improves the quality of translations, especially for longer 
sentences.
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Attention is all you need

Types of Attention Mechanisms

● Self-Attention: Used within the same sequence to compute the relationships between 
different positions. It's the backbone of the Transformer architecture.

● Cross-Attention: Computes relationships between different sequences, often used in tasks 
where the input and output sequences are different, like in translation.

Benefits

● Handling Long Sequences: Attention helps models manage long sequences without the 
issues of vanishing gradients.

● Improved Interpretability: By visualizing attention weights, one can often interpret which parts 
of the input the model is focusing on.

● Flexibility: It can be applied in various domains like text, images, and even audio.
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A word on Transformers

1. independent jet embeddings to produce latent space representations for each jet
2. a central stack of transformer encoders
3. additional transformer encoders for each particle
4. a novel tensor-attention to produce the jet-parton assignment distributions.
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