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“ Toto, I've a feeling we're not in

Kansas anymore.”

THE WIZARD OF OZ, (1939)

Executive Summary
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Powerful new technologies &
methodologies

But also new ways to produce
new ideas

Executive Summary
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—— Materials Science
—— Chemistry
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; : y &, C ) » Web of Science topic matching and matching of domain. Exact queries are provided in the data directory.
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doi:10.5281/zenodo.7057437



Number of HEP-ML Papers by Year
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https://iml-wg.github.io/HEPML-LivingReview/
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Disclaimer:

* |Impossible to do a thorough
review of all interesting
techniques & results

 Focus on newer methods to
show breadth of applications &
future directions

CHRISTOS LEONIDOPOULOS
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Machine Learning

Can learn from data, identify patterns, make
decisions with minimal human intervention
using statistical methods

Artificial Intelligence

Broader concept: encompasses not only ML but
Difference between ML also logic and rule-based algorithms which can
& Al mimic human thought process & reasoning;
includes language understanding, decision-
making, problem-solving
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09 Supervised learning: classification (data has labels)

O
S Unsupervised learning: clustering (data has no labels)
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Artificial Neural Network

Neural Networks &
Deep Neural Networks

Deep Neural Network
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“Deep”: complexity & hierarchy in data
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YU, KAMP, and ARGUELLES PHYS. REV. D 111, L041301 (2025) IceCu be Neutrino Observatory:
g 0.004 EI iithﬁltjel Timing PDF (VAE)
20.003- =g Predicted Timing PDF (Superres) o Reco nstruction algo rithms
2 0.002 . : :
Soon] S F limited by sparsity of optical modules
T (1: T for detection of photons
Time (ns ’ .
f 20 o ® o U ® Later 1
42 \’“3@‘5& FEY: e ML interpolates photon path
S ITI 5. e 14 ’ and calculates hypothetical
i ¢ 4 b ;4 ",l" q: ' . . . .
1" i {1 (B hits assuming “virtual” optical
1Ly modules
Realistic (Masked) Superresolved Ideal (Unmasked)

FIG. 1. Eventdisplays, showing the masked, superresolved, and unmasked event. The unmasked and masked events are obtained from
simulation, representing ideal and realistic detector configurations, while the superresolution network attempts to enhance the masked
event into the unmasked. The top plot shows the photon arrival time series from the superresolution network and the pretrained VAE on
two particular virtual OMs in the superresolved event.

Neutrino reconstruction

PhysRevD.111.L041301
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13 ] g D : = | PHYSICAL REVIEW D 111, L041301 (2025)
) \ ——— Realistic (Masked) e
\\ Y ——— Superresolved i
\. - .. = — Jdeal (Unmasked) Enhancing events in neutrino telescopes through
510! - e deep-learning-driven superresolution

Felix J. Yu ,1’2’* Nicholas Kamp®, " and Carlos A. Argiielles b2t

"The NSF Al Institute for Artificial Intelligence and Fundamental Interactions
2J_’)epartment of Physics and Laboratory for Particle Physics and Cosmology, Harvard University,
Cambridge, Massachusetts 02138, USA

2

® (Received 3 September 2024; accepted 6 January 2025; published 5 February 2025)

Recent discoveries by neutrino telescopes, such as the IceCube Neutrino Observatory, relied extensively
on machine learning (ML) tools to infer physical quantities from the raw photon hits detected. Neutrino
) telescope reconstruction algorithms are limited by the sparse sampling of photons by the optical modules
A due to the relatively large spacing (10-100 m) between them. In this Letter, we propose a novel technique
that learns photon transport through the detector medium through the use of deep-learning-driven
superresolution of data events. These “improved” events can then be reconstructed using traditional or ML
- techniques, resulting in improved resolution. Our strategy arranges additional “virtual” optical modules
B . el within an existing detector geometry and trains a convolutional neural network to predict the hits on these
virtual optical modules. We show that this technique improves the angular reconstruction of muons in a
100 vt . — generic ice-based neutrino telescope. Our results readily extend to water-based neutrino telescopes and

102 103 104 10° other event morphologies.
True Neutrino Energy (GeV) DOIL: 10.1103/PhysRevD.111.L041301

Angular Resolution (°

FIG. 4. Log-scale angular resolution. The median lines are
drawn in solid color as a function of the true neutrino energy,

produced by a baseline SSCNN method. The 20 and 80 percen-
tiles are denoted by the dashed lines and shaded regions.

Neutrino reconstruction

PhysRevD.111.L041301
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Particle Tracking



15 * Track reconstruction is a clustering problem:
start with a (large) number

of 3D points, identify set of points belonging
to a common trajectory

e Combinatorial Kalman Filter considers
all combinations of hits:

o Excellent efficiency & purity

o CPU performance scales very badly with
increasing # of hits

o Solutions for LHC (1k hits per event)
not applicable later (HL-LHC, FCC)
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Particle Tracking: The Problem
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Connecting The Dots 2023

10 Oct 2023, 09:00 — 13 Oct 2023, 18:00 Europe/Zurich

Q@ Toulouse

Description - 8th |nternational Connecting The Dots Workshop

The Connecting The Dots workshop series brings together experts on track reconstruction and other problems involving pattern recognition in
sparsely sampled data. While the main focus will be on High Energy Physics (HEP) detectors, the Connecting The Dots workshop is intended to be
inclusive across other scientific disciplines wherever similar problems or solutions arise.

The 2023 edition will be hosted in Toulouse (France). It is the 8th in the series after: Berkeley 2015, Vienna 2016, Orsay 2017, Seattle 2018, Valencia
2019, virtual in 2020 and Princeton 2022.

The workshop is plenary sessions only, with a mix of invited talks and submitted contributions. There will also be a Poster session.
CTD 2023 is organised as an in-person conference and no remote presentation is foreseen. We expect all presenters to register.

The last day, Friday 13 October, is dedicated to a satellite mini-workshop on Real time Tracking : triggering events with tracks, see the dedicated
indico page. Registration to the mini-workshop are free and independent of the main CTD conference (and if you register to CTD, you are not
automatically registered to the mini-workshop).

Important dates

Abstract submission: 26 May - 36June 14 July 2023 (The call for abstracts is now closed)
Registration deadlines : Early-bird 1st September, otherwise 22 September 2023.

Fees

- Standard 350€

- Early Bird (up to 01/09/2023) 315€
- Students 220€

This fee covers local support, morning and afternoon coffee breaks, lunches, the welcome reception and workshop dinner.

Institut national T Université UNIVERSITE
de physique nucléaire , de Toulouse TOULOUSE Il

et de physique des particules PauL SABATIER

Particle Tracking: connecting the dots
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Particle Tracking: Nearest Neighbour Search



Nearest Neighbour Search

credit

Particle Tracking
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https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html

®1 Particle Tracking: Graph Neural Networks

ATL-ITK-PROC-2022-006

o > 14— T
A, & o ATLAS Simulation Preliminary -
o« ' 2 L Vs=14 TeV, tt, <u>=200, p_> 2 GeV .
¥ ‘= T © [Tk layout: 23-00-03 ]
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* GNN converts collection of hits into a graph: nodes correspond to hits,
edges to probability that hits belong to same track


https://indico.cern.ch/event/1252748/timetable/?view=standard
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Particle Tracking: Recurrent Neural Networks

arXiv:2212.02348
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Figure 2. The predicted hit coordinates output by an RNN where the preceding three true hits
are used as input, are overlaid on the ACTS detector. Tracks are required to have at least 8 hits

within the barrel.

RNN

 Designed to handle sequential data

* Suited for tasks where the order and context of data points are crucial
 Represent a significant leap in our ability to model sequences in data

Efficiency

0.85

0.8

7‘ | I I | T | | L L
B ACTS <u>=0 ave.0.962 ]
[ M <p>=200ave.0.966 |
| uncertainty 15 mm <u>=40 ave. 0.960 |
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Particle Tracking: Recurrent Neural Networks

arXiv:2212.02348
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Figure 2. The predicted hit coordinates output by an RNN where the preceding three true hits
are used as input, are overlaid on the ACTS detector. Tracks are required to have at least 8 hits

within the barrel.

Charged Particle Tracking with Machine Learning
on FPGAs

H. Abidi,® A. Boveia,’ V. Cavaliere,® D. Furletov,© A. Gekow,? C. W. Kalderon,® S.
Yoo*

¢ Brookhaven National Laboratory

b Ohio State University

¢ William and Mary
E-mail: sabidi@bnl.gov, antonio.boveia@cern.ch, vcavaliere@bnl.gov,
denis.furletov@gmail.com, gekow.1@osu.edu, william.kalderon@cern.ch,
sjyoo@bnl.gov

ABSTRACT: The determination of charged particle trajectories (tracking) in collisions at
the CERN Large Hadron Collider (LHC) is one of the most important aspects for event
reconstruction at hadron colliders. This is especially true in the high conditions expected
during the future high-luminosity phase of the LHC (HL-LHC) where the number of in-
teractions per beam crossing will increase by a factor of five. Deep learning algorithms
have been successfully applied to this task for offline applications. However, their study
in hardware-based trigger applications has been limited . In this paper, we study different
algorithms for two different steps of tracking and show that such algorithms can be run on
field-programmable gate arrays (FPGAs).
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Classification

flavour-tagging & event classification
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BDT: “a series of if-then-else statements”

y 0 ©)

Figure 14: A sample forest of three trees made from the training dataset given in
Table. 3. The prediction for the test data (Table. 3) and its direction of flow is shown
in blue color.

CMS Vs =8TeV, JLdt 19.5 fb™! CMS Vs=8TeV, det 19.5 fb™
gy F T UL B | 10° —= gy 1 T UL LA AL L L BN | 107 —=
%; 400 pp ~T#,T> by =e=- Observed (ﬂc,theorv) 8 % 400 F-pp - T, T b === Observed (:10'"“"’) Q
(.2, E cut-based analysis === Expected (+10) = (.2. E BDT analysis == Expected (x10) =
_ 350 :— 10 E _ 350 :— 10 E
< c = Bt o =
£ aoof- g E aso0f ag-
250 — 1 Q 250 - 1 o
E =] E =]
200 © 200 °© . . .
C -1 - -1
10 10 ...which makes a big difference
100~ w0 A
. 102 F / 102
sof sof gl
E N CO R -3 v T e = L -3
800 300 400 600 700 soo 10 800 300 200 500 600 700 soo 10
m,. =0.25 m; +0.75 m,, m. [GeV] m.. =0.25 m;+0.75 m_, m- [GeV]

Figure 7: The exclusion plot in m — mso plane for t — bx: decay from cut-based
(left panel) and BDT method (right panel) respectively [117].
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Event Classification: Boosted Decision Trees

Eur. Phys. J. C 73 (2013) 2677
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Review of a decade [CMS]

= Enormous progress over the last few years:

The early days:
Human — inspired
high-level variables
+

Cut-based selection

Early Run 2:
Human — inspired
high-level variables
+

Simple ML

The “Game changer”:
Inputs: low-level info
[as particle sequences]
+

Advanced ML (CNN, RNN)

Runl

Run 2

e.g., b-tagging

Pushing limits further:
Inputs: low-level info
[as unordered sets]

+
Graph Neural Nets

Run 3

R :'::_*::::.!:.‘::E RN
CMS

Hevents
AKd4jets (p_»>30.GeV) ...

—— DeepFlavour phase 1 :
| —— DeepCSV phase 1 S

-| —— DeepCSV phase 0

’ . s=13 TeV, 2016 |
> I T EEEETEnmns > P e T e L T T L LD T I = E
= MS-Slmu!atwh = F "'CMS‘?SlmHIatIO Preliminary- T0E
% Cottevents: % Cottevents I i 8 N
Q |.AKdjets (p.>.30.GeV) o | AKdjets (p_> 30 GeV) i o i
o e S csWe 5
Q10" = {—csvipunt) [ Q0 = v g ol
c Fif o CSW2AVR) [ -9 Eo— DeepCSV E E
'% ::::—cswz - E C|—cMVAv2 [~ C
O e =
= :
1) o — = 102 |=
e} =
8 C
E B H o - H 1] -
108 et 0 107
-I\I\i\ﬂ‘\.l\illl\i\l;lf;//(‘A ||||\||||i|x|| C '7"?" PV T A T A 10'3::'::
0 01 02 03 07 08 0 0 01 02 03 04 05 06 07 08 09 1 01

b jet efficienc

i

b-jet efficiency

03 04 05 06 07

FONPH D T RN Hr T
08 098 1
b jet efficiency

[Disclaimer: Focus on CMS results; similar methods developed by the other LHC experiments]

Loukas Gouskos

FCC Physics Workshop, Krakow 2023
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Flavour Tagging: Convolutional/Recurrent NN
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Flavor tagging for Higgs factories

LCFIPlus performance plots

Jet flavor tagging is essentially important

(b)

for Higgs studies (including self coupllng) 30 parvvenn neot g IE LY ARRPPORS NSRS inng s
LCFIPlus (published 2013) was long R T A —
used for flavor tagging R e e G I L v A S o
= All physics performance in ILD/SIiD/CLIC 3 100 §ﬂﬁ" -3 1o-s§f
are based on LCFIPlus = el L 4= b
. h 0 02 04 05 08 1 100 02 04 06 08 1

FCCee reported >10x better rejection b tagging effciency ¢ tagging eficiency

using ParticleNet (GNN) in 2022

— Delphes is used for simulation

We studied DNN-based flavor tag
with ILD full simulation to confirm it

— Using latest algorithm: Particle Transformer
(ParT)

ParticleNet@FCCee: b/c tagging
c-tagging

N

jet misid. probability
jet misid. probability

-3
107,

0.4 06 08 1
jet tagging efficiency

Taikan Suehara et al., 3" ECFA WS on Higgs/Top/Electroweak Factories, 9 Oct. 2024, page 2

0.4 0.6 038 1
jet tagging efficiency

credit x10 performance improvement in 9-10 years

Flavour Tagging: Graphical Neural Networks

EP) C 82 646 (2022)



https://indico.in2p3.fr/event/32629/contributions/142636/attachments/87453/132031/241009-stag-ecfaws-suehara.pdf

...the quest for the best algorithm

26 .
continues
104
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9 104
>
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S —— DNN (AUC = 0.967)
5 100 | | | |
P 0.0 0.2 0.4 0.6 0.8
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. E Classification: GNN DNN
vent Classitication: VS

arXiv:2411.06487
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Using DNN for tuning and reweighting simulated samples

(13 TeV)

CMS simulation Preliminary

— T [ ' | ]
L POWHEG pp-tt + PYTHIA
3 — NNLO (MiNNLO) |
— 408 —=' NLO (hvq) E
o= i~ Reweighted NNLO
Ol
©
S
= 10 E
1075} T E
| | ! ] ] | ] L L l '__'_'__
200 400 600 800
— | ST o
9 1 1 /’/,/ ——— ]
Z —
~
S |
I J
E ’ — NNLO (MiNNLO)
o == NLO (hvq) ]
0.9 | - Roweighed NNLO
500 400 600 800
pr(t) [GeV]

One large sample of simulated data is produced with
detailed detector simulation (very CPU expensive) using a
given physics model (e.g. NLO)

Additional, smaller samples are produced based on
different models (e.g. NNLO) in order to train the ML
algorithm w/o detailed detector simulation and event
reconstruction

ML computes weights for each simulated event, applies
them on large simulated sample

Update existing simulation using new theoretical progress
(or a systematic effect) fast & reliably

credit

Simulation: Deep Neural Networks


https://cds.cern.ch/record/2904938
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GAN: emulate interaction of particles with high-granularity calorimeter

Weight
kernel Batch Zero

E X, y 2 normalization  padding

Latent Convolutlon
vector é 3-5 are
U\ 4- S|m|Iar M’
— | |oxoxsxs
e X . 9x36X72x72/. 6 o8 ..

Resh B -
c €s ape Upsamplmg Convl Conv5 ConvG Conv? Generated
> 666 . _I/ Image
- "Generator 5
-------------------------------------------------------------------- > 0
-------------------------------------------------------------------- » O
sum
Oam
Average
Pooling| O

Flattening

Discriminator

“Fake” event created by GAN,
compare with simulated event
Discriminator tries to guess if event is
real or not

Discriminator guessing correctly
pushes GAN to adjust generation
strategy (e.g. sampling of features) to
improve “deception”

Repeat till discriminator can no longer
tell difference

Simulation: Generative Adversarial Networks

arXiv:2109.07388
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Can you guess which
of these Images

are synthetic and
which ones are real?
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Simulation: Generative Adversarial Networks
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31 GAN: emulate interaction of particles with high-granularity calorimeter

Neutral pions with E_ = 97.72 GeV 6 = 62.16° E_=202.78 GeV and 6 = 91.12°

20F 'h-'n - 20 ---r'::
MC z -ﬁ "':- Z i'r-l

.r - 10*
: L T 0
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: . 3 By T . .
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Photons with E_ = 403.62 GeV 0 = 116.33°

ZOE—_ ".':-"'. rﬁ . 20;—'. -':'IE:. .I.’l . 402— T, :,_'. ) 10_2 Figure 6. GEANT4 vs. GAN electrons showers with E, = 202.78 GeV and 6 = 91.12°.
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arXiv:2109.07388




32 End-to-end simulation of collision events [ -

| Target

End-to-end simulation of particle physics events
Flow

with Flow Matching and generator Oversampling

c-tagging

F Vaselli 1 12 , F Cattafesta 2, P Asenov ?* and A Rizzi *?

! Scuola Normale Superiore, Pisa
2 Istituto Nazionale di Fisica Nucleare, Pisa

3 Universita di Pisa

E-mail: francesco.vaselli@cern.ch, filippo.cattafesta@cern.ch,
patrick.asenov.asenov@cern.ch, andrea.rizzi@cern.ch

February 2024

qgd

Abstract. The simulation of high-energy physics collision events is a key element
for data analysis at present and future particle accelerators. The comparison of
simulation predictions to data allows looking for rare deviations that can be due to new
phenomena not previously observed. We show that novel machine learning algorithms,
specifically Normalizing Flows and Flow Matching, can be used to replicate accurate
simulations from traditional approaches with several orders of magnitude of speed-
up. The classical simulation chain starts from a physics process of interest, computes
energy deposits of particles and electronics response, and finally employs the same
reconstruction algorithms used for data. Eventually, the data are reduced to some
high-level analysis format. Instead, we propose an end-to-end approach, simulating the
final data format directly from physical generator inputs, skipping any intermediate
steps. We use particle jets simulation as a benchmark for comparing both discrete
and continuous Normalizing Flows models. The models are validated across a variety

N constituents

MI’E‘CO/MQEFI

of metrics to identify the most accurate. We discuss the scaling of performance with
the increase in training data, as well as the generalization power of these models on
physical processes different from the training one. We investigate sampling multiple
times from the same physical generator inputs, a procedure we name oversampling, and
we show that it can effectively reduce the statistical uncertainties of a dataset. This
class of ML algorithms is found to be capable of learning the expected detector response
independently of the physical input process. Their speed and accuracy, coupled with

gen
g

p;ECO/p

I O

the stability of the training procedure, make them a compelling tool for the needs of
current and future experiments.
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Simulation: Normalizing Flows

arXiv:2402.13684
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Spherical Cow
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Simulation with ML
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Simulation with ML
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Anomaly Detection



36 Supervised learning: dog or cat? Unsupervised learning: dogs only!

Exploit vast datasets to search for any strange behaviour or unusual signs
that could point to New Physics without relying on specific theoretical models
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Anomaly Detection
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AD: BSM searches in
model-agnostic way
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Anomaly Detection: Auto-Encoders




38 Flavour-tagging with Anomaly Detection
0 L [ e B 7 D R
'E i ....: QCD Max. Likelihood :I Top quarl_< . ] 'E' 0.6 ... QCD Max. Likelihood I:] Top quarl.( . ]
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o | - |
g | g o3t :
Eoq E |
s 031 ] S 0.4 -
Z Z I
0_2; B 0.3:— -
0.2f- ]
0.1 —
n I 0.1 —
3 [
1 [
o : ] ]
S 0= 5 20 00 20
> Anomaly Score Anomaly Score
o
L . .
” Trained on top quarks Trained on QCD
O
2
Anomaly Detection: Deep Sets
y : Deep

SciPost Phys. 16, 062 (2024)




39

)5 ¢
£

Real-time processing



40 DUNE triggering on neutrinos from Galactic Supernova burst

Standard clustering algorithms
* Binomial clustering efficiencies prob = 33%
* Background rate: 0.14 Hz

ML clustering creates “boxes” with neutrino prediction
* Average multiplicity: 1.2
* Background rate: 0.45 Hz

0.8

o
o
1

Comparison of a binomial
clustering algorithm vs.
ML clustering based on

early SN neutrino models.

o
»
|

Trigger probability

0.2

—— Machine learning results
—— Binomal example results

1 [ ] | | 1 L -
Cred |t 0.05 10 20 30 40 50 60 70 80
Number of incident neutrinos

Triggering on Galactic Supernova neutrinos
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https://indico.cern.ch/event/1388874/contributions/5878782/attachments/2833543/4951171/SN_trigger_final.pdf
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ML on LHCDb trigger
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LHCb Simulation Preliminary

0.80

- NN based PID

EecaL
Ptrack

070 | | | | |
0.5 0.6 0.7 0.8 0.9 1.0

Background rejection

0.75 |-

Extensive studies and usage of Lipschitz networks
* tracking and fake-track rejection

e electron ID

» Search for Long-Lived Particle signatures
(arXiv:2112.00038)

LHCb using ML at trigger since 2015

Test MLP running with TensorRT

90 A

(00]
o
1

Default (2 hidden layers)
32-bit FP precision

—&— 1 instances

2 instances
—&— 3 instances
—— 4 instances
—&— 5 instances

HLT1 throughput [kHZ]
(@) ~J
- o

50 A LHCb simulation .
-== Dbaseline
2 4 6 8 10 12 14 16
maximum batch size of TensorRT [103] credit

ML usage extends beyond reconstruction

* Flexible and standardised pipelines for ML model
serving backends

e Too tedious (and error-prone) to do manually


https://indico.cern.ch/event/1433541/attachments/2893486/5072673/ML4LHCb_CERNSeminar_JGP_100724.pdf
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Counts

FPGA-based AD with two algorithms

2.1 Inputs to L1 anomaly detection
AXOLITL and CICADA use different L1 reconstructions as inputs. AXOLI1TL takes in 10

CMS Prelimina 2023 (13.6 TeV i i iss] i
2 [T TnaY e LAl CMS Preliminary - © 2023(186TeV) jets, 4 electron/photon objects, 4 muons, and transverse missing energy (MET) as reconstructed in
ool | QKeras ‘ 12 P I —— the L1 trigger from calorimeter and muon triggers. The 3-momenta (pr, 17, ¢) of these objects,
score = 5 : = = %) . . . . .
: e 2 P X —@— RunC, Mean: 244, StdDev: 1.63 in raw hardware integer values, are used. CICADA, by contrast, uses calorimeter region energies,
105F §| score = 250 : 4 8 10?2 € RunD, Mean: 2.57, StdDev: 1.77 . . . . . . . .
' score = 1250 g . - o which form an 18x14 image-like input. The input streams for both algorithms are shown in Fig. 1.
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Anomaly Detection for CMS L1 trigger

arXiv:2411.19506
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Challenges
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“The holy grail for almost any smart product is for it to be deployable anywhere,
and require no maintenance like docking or battery replacement.”

 Large volumes of data: petabytes of data (HL-LHC soon, FCC later?)

* Access to HPC resources

* Real-time processing: large rates, small latency

* Scalability: ML/AI solutions must follow evolution of operational conditions,
detector upgrades, new challenges of future experiments
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Computational Demands
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Training data limitations:

*Supervised algorithms need labelled data (time-consuming process
requiring human input: tedious & error-prone)

*Biased datasets or small statistics that introduce large errors when
generalising
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Data Quality
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* Data comes from different sources and in different formats; many
solutions being developed, but approach rather fragmented
* Lacking end-to-end physics solutions (good for job security?)
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Heterogeneity
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* Junior people enthusiastic about adoption of new technologies
* Senior people hesitant about joining the frenzy

“Bottleneck for big advances can be either technical or sociological"

C makes it easy to shoot yourself in
the foot: C++ makes it harder, but
when you do it blows your whole leg

off.

— B/‘-a/zn.e Sfxwus;\f/zufz- -

Sociological xzauors
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What lies ahead
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* Quantum Computing: Quantum computers offer potentially exponential speed-
ups for certain types of calculations. Quantum machine learning could leverage
these capabilities with quantum algorithms, enhancing speed and efficiency for
CPU-intensive tasks (eg. simulation, pattern recognition, anomaly detection with
massive datasets)

0
o
-
=
o
o
o
=
Z
o
L
-l
1%2]
O
-
@
oc
T
o

Quantum Machine Learning
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* Automated ML technologies automate parts of the ML pipeline, such as
model selection and hyperparameter tuning

* Adaptive Algorithms: Algorithms that can dynamically adjust to new data or
experimental conditions

* Exotic searches using automated Anomaly Detection?
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Automated Machine Learning
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* Southern Wide-field Gamma-ray Observatory: a collaboration with an array of 6,000 particle detectors
in the highlands of South America to study gamma rays from outer space.

* Collaboration assessing how to arrange and place these 6,000 detectors.
“We have an enormous number of possible solutions; how do we pick the best one?”

e Experiments at LHC (or future colliders): hundreds of individual (enormously complicated) sub-
detectors that work together to track and measure particles. Optimizing each one’s design—not as an
individual component but as a part of a complex ecosystem—is nearly impossible. “the human brain is
incapable of thinking in 1,000 dimensions”

* Particle Flow algorithms: a wholistic approach in event reconstruction
* Consider physics goals, budget, and real-world limitations to choose the optimal
detector design
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Design of new experiments

arXiv:2310.01857




53

0
o
-
=
o
o
o
=
Z
o
L
-l
1%2]
O
-
@
oc
T
o

>
ST
R At

i g ."
N




54

%)
o
-l
>
o
o
o
o
=z
@)
L
-l
%)
o
-
2
o
T
)

Machine Learning models that mimic the complex functions of the human brain

* Transformers: “attention mechanism”, aka: learning relationships /
context (LLM & ChatGPT)

* Originally designed for natural language processing tasks,
transformers can have an impact in various other domains, including
physics, due to their ability to handle sequential data effectively
(sequence prediction problems)

Advancements in Neural Networks




55 “Give me some example code for plotting a 1D graph”

1D Bar Graph

cleonido

Create an example python program using the matplotlib library that creates a 1D bar graph

& GitHub Copilot

import matplotlib.pyplot as plt

# Data
K= R %8, " "y ')

Y. = [19) 24,

# Create bar

36, 40, 15]

graph

Values

plt.bar(x, y)

# Add title and labels
plt.title("1D Bar Graph')

plt.xlabel('Categories’)
plt.ylabel('values")
# Show graph
1t.show
p () A B C D =
Categories
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LLM writing code




56 “Give me some example code for a scatter plot with 100 points, and a fit through the points
that determines the parameter of the non-linear relationship”

cleonido

Create a 2D scatter plot using the relationship y=a*x*2 with a 100 random points and calculate the value of 2 D Scatter Plot
a by doing a fit

& GitHub Copilot

import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import curve_fit

# Define function
def func(x, a):
return a * x®*2

# Generate random data

np.random. seed(42) >
X = np.random.rand(160)

y =2 * x**2 + 0.1 * np.random.randn(100)

# Fit data to function

popt, pcov = curve_fit(func, x, y)

# Create scatter plot

plt.scatter(x, y)

plt.title('2D Scatter Plot')
plt.xlabel('x")
plt.ylabel('Y")

# Add fitted curve

xfit = np.linspace(o, 1, 100) 0.0 0.2 0.4 0.6 0.8 1.0
yfit = func(xfit, *popt) X

plt.plot(xfit, yfit, 'r-', label="Fit')

& Shini grach a = 1.9853600095527293

plt.legend()

plt.show()

print('a ="', popt[e])

LLM writing code #2
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Given the sequence 1, 2,4, 7, 11, 16, what is the next term?

2 approaches:
* Numeric regression: direct prediction of the next term (like a fit through data points)

* Symbolic regression: finding a formula for the sequence

* a closed formula: u,, = n(n;l) + 1

* or a recurrence relation: u, = u,_; + n

dAscoli, Kamienny, Lample, Charton 2022

credit
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Recurrent sequences: Deep symbolic regression


https://indico.nikhef.nl/event/4875/contributions/21154/attachments/8263/11781/EUCAIF.pdf
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Constant Approximation Rel. error Expression u,, Approximation .,
0.3333 (3 + exp(—6))~" 107° arcsinh(n) log(n + vn? + 1)
0.33333 1/3 107 arccosh(n) log(n +vn2 —1)
3.1415 | 2arctan(exp(10)) | 1077 arctanh(1/n) Llog(1 + 2/n)
3.14159 m 10~ catalan(n) Upn—1(4 —6/n)
1.6449 1/ arctan(exp(4)) | 1077 dawson(n) _n
1.64493 72 /6 107 . ) )

0.123456789 10/92 109 j0(n) (Bessel) Vrn
0.987654321 | 1 — (1/9)? 10~ 11 i0(n) (mod. Bessel) ope
credit

Recurrent sequences: Deep symbolic regression


https://indico.nikhef.nl/event/4875/contributions/21154/attachments/8263/11781/EUCAIF.pdf
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Scattering amplitudes: complex functions predicting the outcome of particle interactions

e Computed by summing Feynman diagrams of increasing complexity

* Loops: virtual particles created and destroyed in the process

* A hard problem: each loop introduces two latent variables, their integration give rise to generalized
polylogarithms

 Calculated from symbols: homogeneous polynomials, degree 2L (L=loop), with integer coefficients
(some of which are zero)

.-

number of terms
6

12

636

11,208

263,880
4,916,466
92,954,568
1,671,656,292

Cai, Merz, Nolte, Wilhelm, Cranmer, Dixon, Charton, 2023

CO J O Ct i W ho =

credit TABLE II. Number of terms in the symbol of FPEL) as a func-
tion of the loop order L.

Recurrent sequences: gluon scattering amplitudes
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https://indico.nikhef.nl/event/4875/contributions/21154/attachments/8263/11781/EUCAIF.pdf
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Prediction accuracy of non-zero coefficients

two-step shape?

0 20 40 60 80 100 0 50 100 150 200 250 300

credit
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Recurrent sequences: gluon scattering amplitudes


https://indico.nikhef.nl/event/4875/contributions/21154/attachments/8263/11781/EUCAIF.pdf
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Predict L=6 from L=5 coefficients:

*98.4% sign accuracy
*99.6% magnitude accuracy

Conclusions:
*There is a “function” behind this (we just don't know what it is!)
* Difficulty of learning the sign: To my theorist friends, you are not alone!

Al generating new hypotheses for us to test?

credit
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Recurrent sequences: gluon scattering amplitudes


https://indico.nikhef.nl/event/4875/contributions/21154/attachments/8263/11781/EUCAIF.pdf
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Summary
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Powerful new technologies & methodologies
But also new ways to produce new ideas
We are not in Kansas any more

Epilogue
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The danger is not in Al taking over the world
The danger is in not engaging, and letting
somebody else use Al to take over the world

Epilogue
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