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Executive Summary
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Powerful new technologies & 
methodologies

 

    But also new ways to produce 
 new ideas

Executive Summary
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Fraction of Physics papers involving ML in 
recent years 
doi:10.5281/zenodo.7057437
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Number of HEP papers involving ML in 
recent years 
https://iml-wg.github.io/HEPML-LivingReview/

C
H

R
IS

T
O

S
 L

E
O

N
ID

O
P

O
U

L
O

S



06 Disclaimer:

• Impossible to do a thorough 
review of all interesting 
techniques & results

• Focus on newer methods to 
show breadth of applications & 
future directions
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Terminology
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Machine Learning

Can learn from data, identify patterns, make 
decisions with minimal human intervention 
using statistical methods

Artificial Intelligence

Difference between ML 
& AI
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Broader concept: encompasses not only ML but 
also logic and rule-based algorithms which can 
mimic human thought process & reasoning; 
includes language understanding, decision-
making, problem-solving
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Supervised & 
unsupervised learning
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Supervised learning: classification (data has labels)

Unsupervised learning: clustering (data has no labels)
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Neural Networks & 
Deep Neural Networks
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“Deep”: complexity & hierarchy in data
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Reconstruction
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IceCube Neutrino Observatory: 

• Reconstruction algorithms 
limited by sparsity of optical modules 
for detection of photons

 
• ML interpolates photon path 

and calculates hypothetical 
hits assuming “virtual” optical 
modules 

Neutrino reconstruction
PhysRevD.111.L041301
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Neutrino reconstruction
PhysRevD.111.L041301
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Particle Tracking
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Particle Tracking:  The Problem

• Track reconstruction is a clustering problem: 
start with a (large) number 
of 3D points, identify set of points belonging 
to a common trajectory

• Combinatorial Kalman Filter considers 
all combinations of hits: 

o Excellent efficiency & purity
o CPU performance scales very badly with 

increasing # of hits 
o Solutions for LHC (1k hits per event) 

not applicable later (HL-LHC, FCC) 
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Particle Tracking: connecting the dotsC
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Particle Tracking:  Nearest Neighbour SearchC
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Particle Tracking:  Nearest Neighbour Search

credit
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https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html
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• GNN converts collection of hits into a graph: nodes correspond to hits, 
edges to probability that hits belong to same track

credit

IDTR-2023-06

Particle Tracking:  Graph Neural Networks
ATL-ITK-PROC-2022-006
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https://indico.cern.ch/event/1252748/timetable/?view=standard


20 Particle Tracking:  Recurrent Neural Networks

RNN
• Designed to handle sequential data
• Suited for tasks where the order and context of data points are crucial
• Represent a significant leap in our ability to model sequences in data

arXiv:2212.02348

C
H

R
IS

T
O

S
 L

E
O

N
ID

O
P

O
U

L
O

S



21 Particle Tracking:  Recurrent Neural Networks
arXiv:2212.02348
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Classification 
flavour-tagging & event classification
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Event Classification: Boosted Decision Trees

BDT: “a series of if-then-else statements”

…which makes a big difference

Eur. Phys. J. C 73 (2013) 2677
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Flavour Tagging: Convolutional/Recurrent NN
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Flavour Tagging: Graphical Neural Networks

x10 performance improvement in 9-10 yearscredit

EPJ C 82 646 (2022)
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https://indico.in2p3.fr/event/32629/contributions/142636/attachments/87453/132031/241009-stag-ecfaws-suehara.pdf
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Event Classification: GNN vs DNN

Event classification for BSM searches

…the quest for the best algorithm 
continues

arXiv:2411.06487
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Simulation
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Simulation: Deep Neural Networks

credit

• One large sample of simulated data is produced with 
detailed detector simulation (very CPU expensive) using a 
given physics model (e.g. NLO)

• Additional, smaller samples are produced based on 
different models (e.g. NNLO) in order to train the ML 
algorithm w/o detailed detector simulation and event 
reconstruction

• ML computes weights for each simulated event, applies 
them on large simulated sample

• Update existing simulation using new theoretical progress 
(or a systematic effect) fast & reliably 

Using DNN for tuning and reweighting simulated samples 
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https://cds.cern.ch/record/2904938


Simulation: Generative Adversarial Networks

• “Fake” event created by GAN, 
compare with simulated event

• Discriminator tries to guess if event is 
real or not

• Discriminator guessing correctly 
pushes GAN to adjust generation 
strategy (e.g. sampling of features) to 
improve “deception”

• Repeat till discriminator can no longer 
tell difference 

GAN: emulate interaction of particles with high-granularity calorimeter29

arXiv:2109.07388
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Simulation: Generative Adversarial Networks

Can you guess which 

of these images

are synthetic and 
which ones are real?
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Showers generated by GAN present accuracy 
within 10% of Monte Carlo for a diverse range 
of physics features, with three orders of 
magnitude speedup

GAN: emulate interaction of particles with high-granularity calorimeter

Simulation: Generative Adversarial Networks
arXiv:2109.07388
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Simulation: Normalizing Flows

End-to-end simulation of collision events

arXiv:2402.13684
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Simulation with ML
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Simulation with ML
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Anomaly Detection
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Exploit vast datasets to search for any strange behaviour or unusual signs 
that could point to New Physics without relying on specific theoretical models

Supervised learning: dog or cat?

Anomaly Detection

Unsupervised learning: dogs only!
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AD: BSM searches in 
model-agnostic way

Anomaly Score

Anomaly Detection: Auto-EncodersC
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Anomaly Detection: Deep Sets

Trained on top quarks Trained on QCD

Flavour-tagging with Anomaly Detection

SciPost Phys. 16, 062 (2024)
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Real-time processing
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Triggering on Galactic Supernova neutrinos

credit

Standard clustering algorithms
• Binomial clustering efficiencies prob = 33%
• Background rate: 0.14 Hz

DUNE triggering on neutrinos from Galactic Supernova burst 

ML clustering creates “boxes” with neutrino prediction
• Average multiplicity: 1.2
• Background rate: 0.45 Hz
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https://indico.cern.ch/event/1388874/contributions/5878782/attachments/2833543/4951171/SN_trigger_final.pdf


41 ML on LHCb trigger

credit

Extensive studies and usage of Lipschitz networks  
• tracking and fake-track rejection
• electron ID
• Search for Long-Lived Particle signatures 
(arXiv:2112.00038)

LHCb using ML at trigger since 2015

ML usage extends beyond reconstruction 
• Flexible and standardised pipelines for ML model 

serving backends 
• Too tedious (and error-prone) to do manually C
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https://indico.cern.ch/event/1433541/attachments/2893486/5072673/ML4LHCb_CERNSeminar_JGP_100724.pdf
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Anomaly Detection for CMS L1 trigger

FPGA-based AD with two algorithms

arXiv:2411.19506

C
H

R
IS

T
O

S
 L

E
O

N
ID

O
P

O
U

L
O

S



43

Challenges
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Computational Demands

“The holy grail for almost any smart product is for it to be deployable anywhere, 
and require no maintenance like docking or battery replacement.”

• Large volumes of data: petabytes of data (HL-LHC soon, FCC later?)
• Access to HPC resources 
• Real-time processing: large rates, small latency 
• Scalability: ML/AI solutions must follow evolution of operational conditions, 

detector upgrades, new challenges of future experiments 
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Data Quality

Training data limitations: 
•Supervised algorithms need labelled data (time-consuming process 
requiring human input: tedious & error-prone)
•Biased datasets or small statistics that introduce large errors when 
generalising
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Heterogeneity

•Data comes from different sources and in different formats; many 
solutions being developed, but approach rather fragmented 
• Lacking end-to-end physics solutions (good for job security?) 
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Sociological

• Junior people enthusiastic about adoption of new technologies
• Senior people hesitant about joining the frenzy

“Bottleneck for big advances can be either technical or sociological"
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What lies ahead
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Quantum Machine Learning

• Quantum Computing: Quantum computers offer potentially exponential speed-
ups for certain types of calculations. Quantum machine learning could leverage 
these capabilities with quantum algorithms, enhancing speed and efficiency for 
CPU-intensive tasks (eg. simulation, pattern recognition, anomaly detection with 
massive datasets)
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Automated Machine Learning

• Automated ML technologies automate parts of the ML pipeline, such as 
model selection and hyperparameter tuning

• Adaptive Algorithms: Algorithms that can dynamically adjust to new data or 
experimental conditions 

• Exotic searches using automated Anomaly Detection?
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Design of new experiments

• Southern Wide-field Gamma-ray Observatory: a collaboration with an array of 6,000 particle detectors 
in the highlands of South America to study gamma rays from outer space. 

• Collaboration assessing how to arrange and place these 6,000 detectors. 
“We have an enormous number of possible solutions; how do we pick the best one?”

• Experiments at LHC (or future colliders): hundreds of individual (enormously complicated) sub-
detectors that work together to track and measure particles. Optimizing each one’s design—not as an 
individual component but as a part of a complex ecosystem—is nearly impossible. “the human brain is 
incapable of thinking in 1,000 dimensions”

• Particle Flow algorithms: a wholistic approach in event reconstruction 
• Consider physics goals, budget, and real-world limitations to choose the optimal 

detector design

arXiv:2310.01857
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Advancements in Neural Networks

•Transformers: “attention mechanism”, aka: learning relationships / 
context (LLM & ChatGPT) 

•Originally designed for natural language processing tasks, 
transformers can have an impact in various other domains, including 
physics, due to their ability to handle sequential data effectively 
(sequence prediction problems)

Machine Learning models that mimic the complex functions of the human brain
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LLM writing code

“Give me some example code for plotting a 1D graph”
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LLM writing code #2

“Give me some example code for a scatter plot with 100 points, and a fit through the points 
that determines the parameter of the non-linear relationship”
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Recurrent sequences: Deep symbolic regression

credit

Given the sequence 1, 2, 4, 7, 11, 16, what is the next term?

2 approaches:
• Numeric regression: direct prediction of the next term (like a fit through data points)
• Symbolic regression: finding a formula for the sequence

• a closed formula: 𝑢𝑛 =
𝑛 𝑛+1

2
+ 1

• or a recurrence relation: 𝑢𝑛 = 𝑢𝑛−1 + 𝑛 

d’Ascoli, Kamienny, Lample, Charton 2022
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https://indico.nikhef.nl/event/4875/contributions/21154/attachments/8263/11781/EUCAIF.pdf
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Recurrent sequences: Deep symbolic regression

credit
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https://indico.nikhef.nl/event/4875/contributions/21154/attachments/8263/11781/EUCAIF.pdf
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Recurrent sequences: gluon scattering amplitudes

Scattering amplitudes: complex functions predicting the outcome of particle interactions
• Computed by summing Feynman diagrams of increasing complexity
• Loops: virtual particles created and destroyed in the process
• A hard problem: each loop introduces two latent variables, their integration give rise to generalized 

polylogarithms
• Calculated from symbols: homogeneous polynomials, degree 2L (L=loop), with integer coefficients 

(some of which are zero)

Cai, Merz, Nolte, Wilhelm, Cranmer, Dixon, Charton, 2023

credit
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https://indico.nikhef.nl/event/4875/contributions/21154/attachments/8263/11781/EUCAIF.pdf
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Recurrent sequences: gluon scattering amplitudes

Prediction accuracy of non-zero coefficients

credit

for L=6 for L=7 for L=8

two-step shape?
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https://indico.nikhef.nl/event/4875/contributions/21154/attachments/8263/11781/EUCAIF.pdf
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Recurrent sequences: gluon scattering amplitudes

Predict L=6 from L=5 coefficients:
•98.4% sign accuracy
•99.6% magnitude accuracy 

Conclusions:
•There is a “function” behind this (we just don't know what it is!) 
•Difficulty of learning the sign: To my theorist friends, you are not alone!

AI generating new hypotheses for us to test?

credit
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https://indico.nikhef.nl/event/4875/contributions/21154/attachments/8263/11781/EUCAIF.pdf
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Summary
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Powerful new technologies & methodologies

    But also new ways to produce new ideas

    We are not in Kansas any more

Epilogue
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The danger is not in AI taking over the world

    The danger is in not engaging, and letting    

    somebody else use AI to take over the world

Epilogue
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