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Quantum field theories on lattices
Discretized spacetime (spacing )  
non-perturbative, gauge-invariant UV regulator ~ . 

• Needed for theories at strong couplings


- Strong nuclear force (QCD) at low energies


- Strongly interacting BSM theories 

• Numerical simulation to estimate observables  


- Lattice QCD: decades of algorithms and software 
development, execution at extreme scale

a →
a−1

https://evanberkowitz.com/images/2018-05-30-gA/lattice.png
http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/index.html
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High-dimensional path integral over 
degrees of freedom assigned to points 
and edges of a lattice


- Boltzmann weight  encodes 
distribution over “typical” configurations

e−S(ϕ)
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Lattice simulations

⟨𝒪⟩ = [∏
x

∫
∞

−∞
dϕ(x)] 𝒪(ϕ) e−S(ϕ)/ZThermal expt. value 

of operator 𝒪

Z ≡ [∏
x

∫
∞

−∞
dϕ(x)] e−S(ϕ)Partition function

http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/index.html

x x + µ̂Uµ(x) µ

∫

a

ϕ(x) ϕ(x + a ̂μ)
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Lattice simulations

⟨𝒪⟩ = [∏
x,μ

∫ dUμ(x)] 𝒪(U) e−S(U)/ZThermal expt. value 
of operator 𝒪

Z ≡ [∏
x,μ

∫ dUμ(x)] e−S(U)
Partition function

http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/index.html

x x + µ̂Uµ(x) µ

∫

E.g.  matrices 
for QCD

SU(3)

a



QCD contributions
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Lattice QCD
• Hadronic spectrum / structure


- Heavy resonances


- PDFs and their generalizations


- Form factors


• QCD phase diagram


- Critical point


- Equation of state


• New physics searches


- Muon g-2


- Heavy meson decays


• …

Fodor & Hoelbling RMP84 (2012) 449

Constantinou+   2006.08636

Muon g-2 Press release (2023)



Why machine learning?
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The big challenge
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Algorithm 1

Algorithm 2

Algorithm 3

Algorithm 4

Topological QCD 
observable

Lattice spacing  [fm]a

Eichhorn, et al. (2023) 2307.04742

Continuum

 
State-of-the-art LGT calculations require 
enormous computational effort…


-  degrees of freedom


- “Critical slowing down” as 


- Costly matrix inversion for propagators  
(especially as )


… so physics results have limited precision. 

- Statistical uncertainties 

- Systematic uncertainties ( ,  , )

≳ 109

a → 0

⟨ψψ̄⟩
mq → 0

a → 0 mlatt
π → mπ V → ∞
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Why machine learning?

Stokes, Kamleh, Leinweber 1312.0991

Lattice calculations have useful features


- Problem involving lots of well-structured data


- Analytic information available (e.g. action)


- Freedom of choice in many aspects


Can now apply ML methods to lattice


- Generative models with exactness now exist


- Industry hardened, scalable ML frameworks
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Personal perspective

Focus on methods that avoid introducing systematic bias

> Model quality only determines efficiency

Take a broad perspective on machine learning 
> Not just a black box       > Become ML researchers
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Some applications of ML
Two major components to a lattice calculation. 
Ongoing efforts to apply ML to both of these. 

1. Ensemble generation 2. Observable measurements & analysis



few typical “configurations”

many atypical “configurations”

generated images!

… is analogous to image generation

Karras, Lane, Aila / NVIDIA 1812.04948
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Some applications of ML
Two major components to a lattice calculation. 
Ongoing efforts to apply ML to both of these. 

1. Ensemble generation 2. Observable measurements & analysis

Normalizing flow models Learned contour deformations
• PRD98 (2018) 074511,  PoS LATTICE2018 176

• PRD102 (2020) 014514,  PRD103 (2021) 094517

• 2309.00600,  NeurIPS ML4PS (2023),  2410.03602

• PRD100 (2019) 034515,  2101.08176,  2107.00734

• PRL125 (2020) 121601,  ICML (2020) 2002.02428, 

PRD103 (2021) 074504,  2305.02402

• PRD104 (2021) 114507,  PRD106 (2022) 014514, 

PRD106 (2022) 074506,  PoSLATTICE (2022) 036

• 2211.07541, 2401.10874, 2404.10819, 2404.11674, 2502.00263
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Disclaimer
I will present only a narrow view of one approach in this wide field. 

• View of the overarching goals of this program


• Some transferrable lessons 

I will not cover several related works: 

- Learned control variates for observables


- Learned preconditioners for Dirac matrix inversion


- Learned spectral function reconstruction


- …

See Boyda, et al. 2202.05838 
for a semi-recent review



Normalizing flow models
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Markov chains
Usually approximate the path integral using Markov chain Monte Carlo

⟨𝒪⟩ ≈
1
n

n

∑
i=1

𝒪(Ui)

Ui ∼ p(U) = e−S(U)/Z

Positive integrand allows interpreting path 
integral weights as a probability measure:

⟨𝒪⟩ = [∏
x,μ

∫ dUμ(x)] 𝒪(U) e−S(U)/Z
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Critical slowing down

CSD also affects a number of other models:

○ CPN-1

○ O(N)

○ 𝜙4

○ ...

Vierhaus; Thesis, doi:10.18452/14138
Frick, et al. PRL63 (1989) 2613
Flynn, et al. 1504.06292
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Algorithm 1

Algorithm 2

Algorithm 3

Algorithm 4

Topological QCD 
observable

Lattice spacing  [fm]a

Eichhorn, et al. (2023) 2307.04742

Continuum

Local/diffusive Markov chains inefficient as 


- Correlation length grows, information transfer is local


- Rare to update entire field coherently 
 

Critical slowing down: autocorrelations diverge 
due to local information transfer


Topological freezing: Markov chain gets “stuck” in 
topological sectors

a → 0



Can we use 
generative machine learning to 

accelerate sampling?

random 
noise

typical 
lattice 
field

???. . .

Replace or augment Markov Chain Monte Carlo… … with direct Monte Carlo using ML?
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Direct sampling using flows
Box-Muller transform (Marsaglia polar form)

        x′￼ =
x
r

−2 ln r2 y′￼ =
y
r

−2 ln r2
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Direct sampling using flows
Box-Muller transform (Marsaglia polar form)

Flow  f

(More complex) Output density:
q(x′￼, y′￼) = r(x, y) | det J |−1

(Simple) Prior density:
r(x, y)

        x′￼ =
x
r

−2 ln r2 y′￼ =
y
r

−2 ln r2
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Direct sampling using flows
Box-Muller transform (Marsaglia polar form)

Flow  f

(More complex) Output density:
q(x′￼, y′￼) = r(x, y) | det J |−1

(Simple) Prior density:
r(x, y)

        x′￼ =
x
r

−2 ln r2 y′￼ =
y
r

−2 ln r2

libstdc++
<random>

Sample from prior

Apply flow



 

- Sample from “easy” prior density 


- Apply parametrized diffeomorphism    (the “flow”) 
 

- Output samples follow computable “model density” 
 
 
 

- Flow  can be trained to match target density!


r(V)

f

f

19

Normalizing flow models
Tabak & Vanden-Eijnden CMS8 (2010) 217

Tabak & Turner CPA66 (2013) 145

blog.evjang.com/2019/07/nf-jax.html

Simple prior 
distribution r(V )

Complex model 
distribution q(U)

q(U) = r(V) det
∂f(V)

∂V

−1

U = f(V)
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Defining the flow function
The flow   must be invertible and have tractable Jacobian determinant


- For LQFT, don’t know what    needs to be a priori


- Expressive parameterized ansatz + optimization 

Key to expressivity — Use composition.

f

f

Each layer is invertible, has tractable Jac.

Simple individual layers combine to give 
complex transformations.

q(U) = r(V) det
ij

∂[ f(V)]i

∂Vj

−1
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Coupling layers
Idea: Construct each  to act on a subset of components, conditioned only on 
the complimentary subset. “Masking pattern”  defines subsets.


 →  Jacobian is explicitly upper-triangular (get det J from diag elts) 
 
 
 
 
 
 
 

 →  Invertible if each diag component invertible, .

g
m

∂[g(V)]i/∂Vi ≠ 0

Updated Frozen

U
pd

at
ed

Fr
oz

en

Schematically

∂[g(V )]i

∂Vj
=

∂[g(V)]1

∂V1

∂[g(V)]2

∂V2
(nonzero)

⋱
1

0 1
⋱

“Updated” ( )mi = 0 “Frozen” ( )mi = 1
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Self-training scheme
Optimization designed for inverted data hierarchy in the lattice problem. 

1. Define “Reverse” Kullback-Leibler (KL) divergence 
between  and  
 
 

2. Measure using samples  from the model 
 
 

3. Minimize by stochastic gradient descent

q(ϕ) p(ϕ) = e−S(ϕ)/Z

ϕi

DKL(q | |p) := ∫ 𝒟ϕ q(ϕ)[log q(ϕ) − log p(ϕ)] ≥ 0

Inspired by:

- Self-Learning Monte Carlo (SLMC) 

[Huang, Wang PRB95 (2017) 035105;

Liu, et al. PRB95 (2017) 041101; …] 
 
- Self-play reinforcement learning 
[Silver, et al. Science 362 (2018), 1140]

DKL(q | |p) ≈
1
M

M

∑
i=1

[log q(ϕi) + S(ϕi)]

Image credit: DeepMind

Lesson 1

Kullback & Leibler Ann. Math. Statist. 22 (1951) 79

Machine learning jargon
Training = optimization, typically by stochastic gradient descent


Loss function  = target function to be minimizedℒ
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Flows for scalar  theoryϕ4

Freeze B

Update A

Checkerboard masking pattern m

Scalar field , 1+1D spacetime ϕ(x) ∈ ℝ
S[ϕ] = ∑

x

∂μϕ(x)∂μϕ(x) +
M2

2
ϕ(x)2 + λϕ(x)4

Flow  f

Albergo, GK, Shanahan PRD100 (2019) 034515
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Flows for scalar  theoryϕ4

“Coupling layer” gi

Tractable Jacobian 


Jij ≡ ∂ϕ′￼i /∂ϕj = [ I
◼ δijesi]

⟹ ln det J = ∑
i

si

Freeze B

Update A

Checkerboard masking pattern m

Scalar field , 1+1D spacetime ϕ(x) ∈ ℝ
S[ϕ] = ∑

x

∂μϕ(x)∂μϕ(x) +
M2

2
ϕ(x)2 + λϕ(x)4 Flow  f

Albergo, GK, Shanahan PRD100 (2019) 034515
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Flows for scalar  theoryϕ4

“Coupling layer” gi

Tractable Jacobian 


Jij ≡ ∂ϕ′￼i /∂ϕj = [ I
◼ δijesi]

⟹ ln det J = ∑
i

si

Freeze B

Update A

Checkerboard masking pattern m

Machine learning jargon
 

Neural network (NN) = highly parameterized function 
approximator, usually a composition of 

linear + elementwise non-linear transformationsScalar field , 1+1D spacetime ϕ(x) ∈ ℝ
S[ϕ] = ∑

x

∂μϕ(x)∂μϕ(x) +
M2

2
ϕ(x)2 + λϕ(x)4 Flow  f

Albergo, GK, Shanahan PRD100 (2019) 034515
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Flows for scalar  theoryϕ4

 
Self-training using Kullback-Leibler divergence 
between  and  

Exactness by reweighting or Metropolis

p(U) = e−S[U]/Z q(U)

ℒ ≡ D′￼KL(q | |p) = ∫ 𝒟U q(U)[log q(U) − log e−S[U]]

pacc(U → U′￼) = min (1,
p(U′￼)
q(U′￼)

q(U)
p(U) )

[Image credit: DeepMind]

Albergo, GK, Shanahan PRD100 (2019) 034515
Nicoli+ PRE101 (2020) 023304

[Image credit: 1805.04829]

⃗ω ′￼= ⃗ω − ϵ∇ ⃗ω ℒ

ℒ ≡ D′￼KL(q | |p) = ∫ 𝒟U q(U)[log q(U) − log e−S[U]]

= ∫ 𝒟U q(U)[log q(U) + S(U)] ≥ − log Z

Machine learning jargon
Training = optimization, typically by stochastic gradient descent


Loss function  = target function to be minimizedℒ
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Flows for scalar  theoryϕ4
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q(U)
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[Image credit: DeepMind]

Albergo, GK, Shanahan PRD100 (2019) 034515
Nicoli+ PRE101 (2020) 023304

[Image credit: 1805.04829]

⃗ω ′￼= ⃗ω − ϵ∇ ⃗ω ℒ

Flows
Traditional 

Method

ℒ ≡ D′￼KL(q | |p) = ∫ 𝒟U q(U)[log q(U) − log e−S[U]]

= ∫ 𝒟U q(U)[log q(U) + S(U)] ≥ − log Z

Machine learning jargon
Training = optimization, typically by stochastic gradient descent


Loss function  = target function to be minimizedℒ
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Birds-eye view
Parameterize flow using 
coupling layers with NNs

Training step

Draw samples from model

Compute loss function

Gradient descent

Draw samples and 
apply bias correction

Desired accuracy?

Save trained model

generating samples is 
"embarrassingly parallel"

Flow  f

random 
noise

typical 
lattice field
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Symmetries in flows
 
 

Symmetries…


✓Reduce data complexity of training


✓Reduce model parameter count


✓May make “loss landscape” easier 

Invariant prior + equivariant flow = symmetric flow model

q(¡)

Exact symmetry

q(¡)

Learned symmetry

Invariant

Pure-symmetry

r(t ⋅ ϕ) = r(ϕ) f(t ⋅ ϕ) = t ⋅ f(ϕ) Cohen, Welling 1602.07576

Motivation: Since target  is invariant under 
symmetries, natural to also make  invariant.

p(ϕ)
q(ϕ)

Lesson 2
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SU(3) gauge symmetry in QCD
Lattice action in the gluon sector


- Gluon self-interaction dynamics (Yang-Mills)


- Confinement, topological instantons 
 

Lattice gauge symmetry

S(U) = −
β
3 ∑

x
∑
μ<ν

ReTr Pμν(x)

Pμν(x) = Uμ(x)Uν(x + ̂μ)U†
μ(x + ̂ν)U†

ν (x)

x x + µ̂Uµ(x) µ

∫

ax x + µ̂Uµ(x) µ

∫

Uμ(x) ↦ Ω(x)Uμ(x)Ω†(x + ̂μ)
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Gauge symmetry
Many lattice QFTs possess a large gauge symmetry group.

Gauge-invariant prior: 

Uniform (Haar) distribution 
 works.r(U) = 1

Gauge-equivariant flow: 

Coupling layers acting on 
(untraced) Wilson loops.


Loop transformation easier to satisfy. V`(x)

`

Uµ(x)

x

µ

∫

`

W`(x) ! ≠(x)W`(x)≠†(x)

Open loop

`

tr W`(x) ! tr W`(x)

µ

∫

Closed loop

Wℓ(x) Flow W′￼ℓ(x)

U′￼μ(x) = W′￼ℓ(x) V†
ℓ(x)

GK, et al. PRL125 (2020) 121601

Uμ(x) ↦ Ω(x)Uμ(x)Ω†(x + ̂μ)

Gauge symmetry for  
lattice gauge theory

SU(3)
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Gauge symmetry
Many lattice QFTs possess a large gauge symmetry group.

Gauge-invariant prior: 

Uniform (Haar) distribution 
 works.r(U) = 1

Gauge-equivariant flow: 

Coupling layers acting on 
(untraced) Wilson loops.


Loop transformation easier to satisfy.

GK, et al. PRL125 (2020) 121601

°º 0 º

¡1

°º

0

º

¡2

SU(2)

¡1

°º

0

º¡2

°º

0

º

¡3

°º

0

º

SU(3)

Custom flows designed 
for  and  

gauge manifolds
U(1) SU(N) Rezende, et al. PMLR119 (2020) 8083


Boyda, et al. PRD103 (2021) 074504

Uμ(x) ↦ Ω(x)Uμ(x)Ω†(x + ̂μ)

Gauge symmetry for  
lattice gauge theory

SU(3)



Training costs minimized by 
transfer learning:


- Trained model for previous target 
 used to initialize for next target


Also applied successfully to 
 gauge theories.

β

SU(N)
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Sampling for U(1) lattice gauge theory

Cranmer, GK, Racanière, Rezende, Shanahan, Nature Reviews Physics 5 (2023) 526

4 orders of 
magnitudeM

ea
su

re
 o

f C
os

t

Bare inverse coupling β

Continuum

Traditional method 1

Traditional method 2

Flows achieve better topological mixing.

Lesson 3
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Including the quarks
Interaction between all quark flavors ( ) and gluons ( ):


 
 

-  is a sparse  matrix


- Traditional methods use the pseudofermion representation


ψu, ψd, … U

Df O(V) × O(V)

| det(D) |2 ∝ ∫ dϕ†dϕe−ϕ†(D†D)−1ϕ

Action

Path integral

Sf = ∑
f

ψ̄f Df[U]ψf

∫ ∏
f

[dψ̄dψ]e−Sf = ∏
f

det(Df[U])
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Flows with pseudofermions
Pseudofermions highly effective in HMC, logical to use for flows also.


Separate coupling layers for gauge field and PFs can be composed arbitrarily


- Simplest case: marginal + conditional model 
 
 
 
 
 

- Preconditioning works equally well for flows


- Modified Metropolis allows averaging away noise 
in the conditional flow

PRD104 (2021) 114507

PRD106 (2022) 014514

PRD106 (2022) 074506

M
od

el
 q

ua
lit

y 
(E

SS
)

Training time (gradient steps)
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Building up to QCD applications

2020

2021
2022

2023

2024

Albergo, et al. 
PRD100 (2019) 034515

GK, et al. 
PRL125 (2020) 121601

Boyda, et al. 
PRD103 (2021) 074504

Abbott, et al. 
PRD106 (2022) 074506

Albergo, et al. 
PRD104 (2021) 114507

PRD106 (2022) 014514

Abbott, et al. 
PoSLATTICE (2022) 036

Finkenrath 
(2022) 2201.02216

Bacchio, et al. 
PRD107 (2023) L051504

Abbott, et al. 
(2023) 2305.02402

New flow architecture

First application to QCD

Gauge symmetric flows

• Viability to solve CSD

• Gauge theories

• 2D spacetime

• Fermions

• Broken symmetry

• 4D spacetime

• Refined flow models

• Better training

Hackett, et al. 
(2021) 2107.00734

• Integrating flows into 
practical simulations

Many more results 
this past year!

2025
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Recent developments
• Better training procedures


- Minimize gradient noise with control variates 
or path gradients 
 

• “Residual flows”


- Flow = Discrete steps according to gradient 
of scalar function 


- Symmetries easier to encode


- Relation to trivializing map, continuous flows

̂S(ϕ)

Vaitl, Nicoli, Nakajima, Kessel  (2022) 2207.08219

Białas, Korcyl, Stebel (2022) 2202.01314

M
od

el
 q

ua
lit

y 
(E

SS
)

Lüscher  CMP293 (2010) 899

Bacchio, Kessel, Schaefer, Vaitl  PRD107 (2023) L051504

Abbott, et al. (2023) 2305.02402

SU(3) gauge theory,  lattice44
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To the exascale
Hosted at Argonne National Lab


63,744 Intel GPUs, ~1 exaflop performance


We are running this year


- Significant software development effort


- New distributed strategies


- Full scale pure-gauge + QCD configs


- Large models with  paramsO(109)

Ryan Abbott, Lattice 2024
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Lessons in distilled form
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Lessons in distilled form
Design training schemes around the features of the problem. 

- Self-training very important for future of this method
Lesson 1
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Lessons in distilled form
Design training schemes around the features of the problem. 

- Self-training very important for future of this method

Incorporate physics constraints and information when possible.

- Gauge symmetries were a breakthrough in applying to gauge theories

- Counter to the Bitter Lesson (Richard Sutton)

Amortize costs as much as possible 
- Transfer learning between targets

- Larger models encoding more general information

Lesson 1

Lesson 2

Lesson 3

“We have to learn the bitter lesson 
that building in how we think we think 

does not work in the long run”

Thank you!



Backup slides
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Related approaches

AI-generated faces (GAN)

Karras, Lane, Aila / NVIDIA 1812.04948

Shen & Liu 1612.05363

AI-generated faces (VAE)

Generative Adversarial Networks (GANs):


- Highly expressive


- Work in the direction of GANs for lattice 
 

Variational AutoEncoders (VAEs):


- Can also learn meaningful directions in the prior 
variables


However: No access to … hard to make 
exact!

q(ϕ)

Urban, Pawlowski 1811.03533

Zhou, Endrődi, Pang, Stöcker 1810.12879
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Transfer learning
Both parameter transfer and volume transfer are 
highly effective for lattice field theory.

Abbott, et al. 2211.07541

Model 
quality

(ESS)

Training time (gradient steps)

Boyda, GK, … PRD103 (2021) 074504

Training time (gradient steps)

Model 
quality 
(ESS)

0 2000 4000 6000 8000 10000

Training iteration

0.0

0.1
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Hyperparameters can make a big difference
Optimization algorithm, hyperparameters, 
and initialization have strong effects on training rate.
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New paradigms

- Partition functions 

(e.g. for thermodynamics)


- Parameter dependence 

- Correlated samples


- Transformed replica exchange


- Sign problems
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Beyond critical slowing down

Practical gains

- Embarrassingly parallel sampling


- Storage-free ensembles

Gerdes+ (2022) 2207.00283

Singha+ (2022) 2207.00980

Nicoli+ PRE101 (2020) 023304

Nicoli+ PRL126 (2021) 032001

Lawrence+ PRD103 (2021) 114509

Rodekamp+ PRB106 (2022) 125139

Pawlowski & Urban (2022) 2203.01243

With ,





and 

Ui ∼ q(U)

̂Z =
1
N

N

∑
i=1

e−S[Ui]/q(Ui)

̂F = − log ̂Z



41

Near-term applications
Correlated sampling 
(e.g. Feynman-Hellmann)


• “Shorter” distance to flow


• Correlations give noise reduction

Replica exchange with flows


• “Shorter” distance to flow


• Flows can be easily inserted into 
existing PT procedures

Anisotropy factor λ Method

Estimate 
derivative

PRD109 (2024) 094514 2404.11674
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Integral deformations for noisy observables
Lattice integrands are often holomorphic, allowing the integration contour to be 
deformed without bias.

[Image credit: Neill Warrington]

ℳ

ℳ̃

⟨𝒪⟩ =
1
Z ∫ℳ

e−S(ϕ)𝒪(ϕ) =
1
Z ∫ℳ̃
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• Defines a modified observable, which may 
have improved variance: 
 

𝒬(ϕ) ≡ det J(ϕ)e−[S(ϕ̃(ϕ))−S(ϕ)]𝒪(ϕ̃(ϕ))

⟨𝒬(ϕ)⟩ = ⟨𝒪(ϕ)⟩
Var[𝒬(ϕ)] ≠ Var[𝒪(ϕ)]

Detmold, GK, Wagman, Warrington  PRD102 (2020) 014514



Parameterize  then minimize variance.

- Caveat: Complex analyticity


- Caveat:  variables


f(ϕ; ω)

SU(N)
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Learning the integration contour

[Image credit: 1805.04829]

The choice of  defines , , and the variance.f : ϕ ↦ ϕ̃ ℳ̃ 𝒬(ϕ)

Detmold, GK, Wagman, Warrington  PRD102 (2020) 014514, 
Detmold, GK, Lamm, Wagman, Warrington  PRD103 (2021) 094517
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