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Quantum field theories on lattices - -

Discretized spacetime (spacing a) —

non-perturbative, gauge-invariant UV regulator ~ a .

 Needed for theories at strong couplings

- Strong nuclear force (QCD) at low energies

- Strongly interacting BSM theories

e Numerical simulation to estimate observables

- Lattice QCD: decades of algorithms and software
development, execution at extreme scale
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Lattice simulations

High-dimensional path integral over
degrees of freedom assigned to points
and edges of a lattice

- Boltzmann weight e >*) encodes [ — &
distribution over “typical” configurations
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Lattice simulations

High-dimensional path integral over
degrees of freedom assigned to points
and edges of a lattice

- Boltzmann weight e ) encodes
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Lattice QCD

 Hadronic spectrum / structure
- Heavy resonances
- PDFs and their generalizations

- Form factors
* QCD phase diagram
- Critical point
- Equation of state
* New physics searches
- Muon g-2

- Heavy meson decays
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Why machine learning?



The big challenge

State-of-the-art LGT calculations require
enormous computational effort...

- >107 degrees of freedom
- “Critical slowing down” as a — (

- Costly matrix inversion for propagators (yy)

(especially as m, — 0)

... SO physics results have limited precision.
- Statistical uncertainties

- Systematic uncertainties (@ — 0, m* — m_, V — o)

Measure of Cost
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Why machine learning?

| attice calculations have useful features

- Analytic information available (e.g. action)

- Freedom of choice in many aspects

Can now apply ML methods to lattice

- Generative models with exactness now exist

- Industry hardened, scalable ML frameworks



Personal perspective

Focus on methods that avoid introducing systematic bias
> Model quality only determines efficiency

Take a broad perspective on machine learning
> Not just a black box > Become ML researchers
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Some applications of ML

Two major components to a lattice calculation.
Ongoing efforts to apply ML to both of these.

1. Ensemble generation 2. Observable measurements & analysis
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Some applications of ML

Two major components to a lattice calculation.
Ongoing efforts to apply ML to both of these.

1. Ensemble generation 2. Observable measurements & analysis

... IS analogous to image generation

few typical “configurations”

many atypical “configurations”
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Some applications of ML

Two major components to a lattice calculation.
Ongoing efforts to apply ML to both of these.

1. Ensemble generation

—\Y
/ \
Normalizing flow models

 PRD100 (2019) 034515, 2101.08176, 2107.00734

* PRL125 (2020) 121601, ICML (2020) 2002.02428,
PRD103 (2021) 074504, 2305.02402

- PRD104 (2021) 114507, PRD106 (2022) 014514,
PRD106 (2022) 074506, PoSLATTICE (2022) 036

e 2211.07541, 2401.10874, 2404.10819, 2404.11674, 2502.00263
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2. Observable measurements & analysis

Learned contour deformations

 PRD98 (2018) 074511, PoS LATTICE2018 176
 PRD102 (2020) 014514, PRD103 (2021) 094517
e 2309.00600, NeurlPS ML4PS (2023), 2410.03602
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Disclaimer

| will present only a narrow view of one approach in this wide field.

* View of the overarching goals of this program

e Some transferrable lessons

| will not cover several related works:
- Learned control variates for observables
- Learned preconditioners for Dirac matrix inversion See Boyda, et al. 2202.05838

for a semi-recent review

- Learned spectral function reconstruction



Normalizing flow models



dUM(x) o) e>V)7
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tegral using Markov chain Monte Carlo
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C riti ca I S I OWi n g d Own i IEi(l:hhlorn,l et all. (202(13) 2307.0?742

Algorithm 1

1 = Algorithm 2

Local/diffusive Markov chains inefficient as a — 0 o — hortm
- Correlation length grows, information transfer is local 5

g 102 -
- Rare to update entire field coherently §
10* § Topological QCD
] observable

0.04 0.06 10 0.12

Critical slowing down: autocorrelations diverge
due to local information transfer

Lattice spacing a [fm]

Topological freezing: Markov chain gets “stuck” in
topological sectors

CSD also affects a number of other models:
CPN-1  Flynn, et al. 1504.06292

O(N)  Frick, et al. PRL63 (1989) 2613
¢* Vierhaus: Thesis, doi:10.18452/14138

o O O O



Can we use
generative machine learning to
accelerate sampling?

Replace or augment Markov Chain Monte Carlo... ... with direct Monte Carlo using ML?
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Direct sampling using flows

Box-Muller transform (Marsaglia polar form)

x’=£\/—21nr2 y’=X\/—2lnr2
r r
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Direct sampling using flows

Box-Muller transform (Marsaglia polar form)

x’=£\/—21nr2 y’=X\/—2lnr2
r r
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»

—1
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(Simple) Prior density: (More complex) Output densilty:
r(x,y) qg(x’,yv) =r(x,y)|detJ|
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Direct sampling using flows

Box-Muller transform (Marsaglia polar form)

x’=£\/—21nr2 y’=X\/—2lnr2
r r

'V
'V
»

libstdc++
result_type(2.

_y = result_type B 0 <random>
‘r2=_xX * X

: _

(_r2>1.0 || __
const result_type _ mult & std::sqgrt(-2 * std::log(__r2) / _r2): »
M _saved = __x * __mult;

_M_saved_avatlable = true; 1
_mult;

_ret = __y %

(Simple) Prior density: (More complex) Output densilty:
r(x,y) qg(x’,yv) =r(x,y)|detJ|
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Normalizing flow models

Tabak & Vanden-Eijnden CMS8 (2010) 217
Tabak & Turner CPAG66 (2013) 145

- Sample from “easy” prior density r(V)

- Apply parametrized diffeomorphism f (the “flow”)
U=fV)

- Output samples follow computable “model density”

vy |~
aV

qg(U) =r(V)det

- Flow f can be trained to match target density!

blog.evjang.com/2019/07/nf-jax.html

Simple prior Complex model
distribution (V') > distribution q(U)
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Defining the flow function

The flow f must be invertible and have tractable Jacobian determinant

- For LQFT, don’t know what f needs to be a priori

o |
et ‘

] 0V]

- EXpressive parameterized ansatz + optimization

| 4(U) = r(V) [d

Key to expressivity — Use composition.

/\W) Howl gy ,/\N\.

A
Sample Model dist.

Y4 g g ] Each layer is invertible, has tractable Jac.
1 2
%—» — — % J Simple individual layers combine to give
v U

complex transformations.



Coupling layers

Idea: Construct each g to act on a subset of components, conditioned only on
the complimentary subset. “Masking pattern” m defines subsets.

— Jacobian is explicitly upper-triangular (get det J from diag elts)

“Updated” (m; = 0) “Frozen” (m; = 1) Updated Frozen
—— —
gVl 3
oV, S
olg(V)], =)
olg(V)]; v, (nonzero)
aV; - ' Schematically _
1 )
O
0 1 T

— Invertible if each diag component invertible, d[g(V)]./0V; # O.
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Machine learning jargon

Training = optimization, typically by stochastic gradient descent

Loss function £ = target function to be minimized

Self-training scheme

Optimization designed for inverted data hierarchy in the lattice problem. [Lesson 1]

Kullback & Leibler Ann. Math. Statist. 22 (1951) 79 Inspired by:
' 1 1 - : - Self-Learning Monte Carlo (SLMC)
1. Define “Reverse” Kullback-Leibler (KL) divergence ‘Huang, Wang PRB95 (2017) 035105:
between g(¢) and p(¢) = e 5D 7 Liu, et al. PRB95 (2017) 041101; ...]
- Self-play reinforcement learning
DKL(Q‘ | p) = J@¢ q(¢p) [log q(¢) — log p(¢)] > () [Silver, et al. Science 362 (2018), 1140]

2. Measure using samples ¢. from the model
1 M
D (qlp) = — Z log g(¢,) + S(¢h,))

M =1

3. Minimize by stochastic gradient descent

- A /l | -
. : - b

Image credit: DeepMind
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Flows for scalar ¢* theory

Scalar field ¢(x) € R, 1+1D spacetime
M2
SIPl = 2, ,h0P(x) + —=h(0)* + A’

Update A = = g 1‘

I
:«:413“

Checkerboard masking pattern m

Albergo, GK, Shanahan PRD100 (2019) 034515

f-—/\—\

%91 2

g
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Flows for scalar ¢* theory

Scalar field ¢(x) € |

M2
SIPl = 2, ,h0P(x) + —=h(0)* + A’

Freeze B

Update A =

Checkerboard masking pattern m

Albergo, GK, Shanahan PRD100 (2019) 034515

, 1+1D spacetime

|| [ #‘

r— b

o %

F

e g

“Coupling layer” g;

Frozen
l » Mm@’ = mao
NN \ Tractable Jag:?bian _
params. Jl] = 8gbl-’/ a¢] = m 51] oS
les lt /‘ ? —> IndetJ = Z S;

—Q 00— |

Updated
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Flows for scalar ¢* theory

Scalar field ¢(x) € |
M2
SIPl = 2, ,h0P(x) + —=h(0)* + A’

, 1+1D spacetime

-#‘

Freeze B

Frozen

r— b

Sl S

“Coupling layer” g;

Machine learning jargon

Neural network (NN) = highly parameterized function

approximator, usually a composition of
inear + elementwise non-linear transformations

A %"e‘-

|

NN

Update A =

params.

les lt

Checkerboard masking pattern m

Albergo, GK, Shanahan PRD100 (2019) 034515

» M@’ = mo

\ Tractable Jacobian
1
/‘ ? == 1ndet]=2si

—Q 00— |
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Flows for scalar ¢* theory

Self-training using Kullback-Leibler divergence
between p(U) = e>'Y/Z and g(U)

Z =Dy (ql1p) = | DU qU) [log g(U) — log ¢SV

Exactness by reweighting or Metropolis

Albergo, GK, Shanahan PRD100 (2019) 034515
Nicoli+ PRE101 (2020) 023304

p(U’) q(U)
q(U") p(U)

PaccU = U’) =min | 1

Machine learning jargon

Training = optimization, typically by stochastic gradient descent
Loss function £ = target function to be minimized

AR RSN IO AL AL T >
IR %"Q\‘t“‘ ®, \s\' 5’ LT
QRSN AL 1A

; = L

<
\\\
-
G \\'
4
~

~~~~~
ST

' = a0 —€eV— VOO
@ OO

’;;";;“\\ :
e S
S ’Q?;@‘h@»,




24

Machine learning jargon

FI OWS fo r S c a I a r ¢ 4 th e O ry Training = optimization, typically by stochastic gradient descent

Loss function £ = target function to be minimized

Self-training using Kullback-Leibler divergence
between p(U) = e>'Y/Z and g(U)

¥ =D (q]lp) = JS%UQ(U) log g(U) — log e!Y]]

Tint |
Exactness by reweighting or Metropolis
Albergo, GK, Shanahan PRD100 (2019) 034515
Nicoli+ PRE101 (2020) 023304

U—- U)=min | 1,
Paccl ) mm( 20" p(U)

~

p(U) q(U)) |

0.5¢

G.(0,1)
0.06F 4 o~ HMC -= Local — ML
0.05
0.04}
0.03}
0.02}
01 23456 7 8 910111213 t
94(5) & 1
| o E i "-’-'g;/ Tint | 0 E oG, 0)
0 X2 ,/’ . 0 ya A Acc
| o G(0 & 37(5 !
(0) Ll"E[)’E] é 50% ML models
© - | g &
o _® A g--2_ @
” N
- ’,g 2t L—().()()(‘;))
© g’[ 1.46(5) |l __._.
‘ . 7,—0.01(1)
B & Fﬁ._;_-_.@
= &
& Tradition al : 70% ML models
6 8 10 12 14 L 6 8 10 12 14
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Birds-eye view

Flow f
™ |‘ o f_—/\_\ .
:lL % 9, 92 %
L 2
random typical
noise lattice field

- =
———pm -, ——— "};-——>
+ B it T
_-1 E‘ﬁ x- R o
‘ il " Bt L
—e—— _— —r

generating samples is
"embarrassingly parallel”

Parameterize flow using
coupling layers with NNs

A 4

Training step

Draw samples from model

Compute loss function

Gradient descent

Draw samples and
apply bias correction

Desired accuracy?

Y

Save trained model
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Symmetries in flows

Motivation: Since target p(¢) is invariant under ["ess"” 2]

symmetries, natural to also make g(¢) invariant.

Exact symmetry Learned symmetry

Symmetries...

v Reduce data complexity of training

v Reduce model parameter count

v/ May make “loss landscape” easier

Pure-symmetry

Invariant

Invariant prior + equivariant flow = symmetric flow model

[ \
I"(t ‘ ¢) — I/'(¢) f(t ’ ¢) =1 f(¢) Cohen, Welling 1602.07576
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SU(3) gauge symmetry in QCD

Lattice action in the gluon sector

S(U) = — é Z Z ReTr P, (x)

X U<v

- Gluon self-interaction dynamics (Yang-Mills)

- Confinement, topological instantons

Lattice gauge symmetry Pu@) = U, U, (x + MU, (x + D)V )

U,(x) > QU 0Q(x + i)
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Gauge symmetry

Many lattice QFTs possess a large gauge symmetry group.

Gauge-invariant prior:

Uniform (Haar) distribution
r(U) = 1 works.

Gauge-equivariant flow:

Coupling layers acting on
(untraced) Wilson loops.

Loop transformation easier to satisty.

Flow

Wo(x) — W, (x)

Gauge symmetry for SU(3)
lattice gauge theory

U, (x) = Qx)U,(x)Q"(x

GK, et al. PRL125 (2020) 121601

e w(x).

U,(x) = Wy(x) VI(x)
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Gauge symmetry

Many lattice QFTs possess a large gauge symmetry group.

Gauge-invariant prior:

Uniform (Haar) distribution
r(U) = 1 works.

Gauge-equivariant flow:

Coupling layers acting on
(untraced) Wilson loops.

Loop transformation easier to satisfy.

Gauge symmetry for SU(3)
lattice gauge theory

U, (x) = Qx)U,(x)Q"(x

Custom flows designed GK, et al. PRL125 (2020) 121601

for U(1) and SU(N)
gauge manifolds

Rezende, et al. PMLR119 (2020) 8083
Boyda, et al. PRD103 (2021) 074504

SU(3)
N
/ \
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Sampling for U(1) lattice gauge theory

10,000 —

Measure of Cost

1,000 —

100 —

10 —

=a@= -Traditibnal method 1
®- - Traditional method 2
= =%= = Flow

Pt 4 orders of
magnitude

Bare inverse coupling /

Flows achieve better topological mixing.

Training costs minimized by [,_esson 3J
transfer learning:

- Trained model for previous target
P used to initialize for next target

Also applied successfully to
SU(N) gauge theories.
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Including the quarks

Interaction between all quark flavors (v, , ...) and gluons (U):

Action Sf — Z l/_/fo[ U ]l//f e, &

f up charm

Path integral JH [dl/‘/dy/]e_sf — H det( Df[ Ul @@
f f down strange

- Dyis asparse O(V) X O(V) matrix

- Traditional methods use the pseudofermion representation

| det(D) |? o [dgb‘fdgbe—ﬁ“w*m‘lﬁb
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Flows with pseudofermions

PRD104 (2021) 114507
PRD106 (2022) 014514
PRD106 (2022) 074506

Pseudofermions highly effective in HMC, logical to use for flows also.

Separate coupling layers for gauge field and PFs can be composed arbitrarily

- Simplest case: marginal + conditional model

2——| ) U - {U, ¢}
\ / proposed
configuration

X —| £i) |- ¢

“conditional”

- Preconditioning works equally well for flows

- Modified Metropolis allows averaging away noise
in the conditional flow

Model quality (ESS)

0.15 -

0.10

0.05

0.00

— No preconditioning

— EO

--- EQO, 1 Hasenbusch

----- EO, 2 Hasenbusch g
— EQO, 3 Hasenbusch N .\_J-/' |

0

5000 10000 15000 20000 25000

Training time (gradient steps)
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Building up to QCD applications

Finkenrath
Albergo, et al. (2022) 2201.02216

PRD100 (2019) 034515

Hackett, et al.
(2021) 2107.00734

Boyda, et al.

&j ;; :} ‘
PRD103 (2021) 074504

GK, et al.

Alseree, & &l
PRL125 (2020) 121601 crgo, St 4

PRD104 (2021) 114507

Gauge symmetric flows PRD106 (2022) 014514

* Viability to solve CSD
Gauge theories
e 2D spacetime

* Fermions
Broken symmetry

First application to QCD

Abbott, et al.
PoSLATTICE (2022) 036

Bacchio, et al.
PRD107 (2023) LO51504

ey

2023 \V\\\x\

Many more results
this past year!

Abbott, et al.
PRD106 (2022) 074506

Abbott, et al.
(2023) 2305.02402

New flow architecture %i
4D spacetime
Refined flow models « Integrating flows into
e Better training practical simulations
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Recent developments

» Better training procedures

- Minimize gradient noise with control variates

or path gradients

Vaitl, Nicoli, Nakajima, Kessel (2022) 2207.08219
Biatas, Korcyl, Stebel (2022) 2202.01314

e “Residual flows”

- Flow = Discrete steps according to gradient
of scalar function S(¢)

- Symmetries easier to encode

- Relation to trivializing map, continuous flows

Lischer CMP293 (2010) 899
Bacchio, Kessel, Schaefer, Vaitl PRD107 (2023) L051504

Model quality (ESS)

0.8

— standard — control variates

0.6 -

0.0

200

SU(3) gauge theory, 4* lattice
[ I |

400 600 800 1000
training step

Abbott, et al. (2023) 2305.02402



To the exascale

Hosted at Argonne National Lab

63,744 Intel GPUs, ~1 exaflop performance

We qre runn|ng th|S year Ryan Abbott, Lattice 2024 \
1010? i '/)\‘"
L | Need model parallel; . {Aurora)
- Significant software development effort ol eeT mO Te par? elsnf T A
- New distributed strategies £ 10, —
= 3
. D | -
- Full scale pure-gauge + QCD configs £ 10 ' First QCD T a
é; 106_3 20 U(1)" " Schwinger i — g
- Large models with O(10”) params - - E
105_E i—» %
| B
104_; . Scalar ¢* | —>
102 108 10t 18 108 107

Physical degrees of freedom

34



Lessons In distilled form
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Lessons In distilled form

[Lesson 1} Design training schemes around the features of the problem.
- Self-training very important for future of this method
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Lessons In distilled form

[Lesson 1} Design training schemes around the features of the problem.
- Self-training very important for future of this method

[Lesson 2] Incorporate physics constraints and information when possible.

- T __ —

~ “We have to learn the bitter lesson
| that building in how we think we think |
does not work in the long run”

———— ——

- Counter to the Bitter Lesson (Richard Sutton)
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Lessons In distilled form

[Lesson 1} Design training schemes around the features of the problem.
- Self-training very important for future of this method

[Lesson 2] Incorporate physics constraints and information when possible.
- (Gauge symmetries were a breakthrough in applying to ge‘tere

=" “We have to learn the bitter lesson
{ that building in how we think we think |
does not work in the long run” "

- Counter to the Bitter Lesson (Richard Sutton)

[Lesson 3] Amortize costs as much as possible
- Transfer learning between targets

- Larger models encoding more general information
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Thawnl vau!

Lessons In distilled form

[Lesson 1} Design training schemes around the features of the problem.
- Self-training very important for future of this method

[Lesson 2] Incorporate physics constraints and information when possible.

- T __ —

~ “We have to learn the bitter lesson
| that building in how we think we think |
does not work in the long run”

———— ——

- Counter to the Bitter Lesson (Richard Sutton)

[Lesson 3] Amortize costs as much as possible
- Transfer learning between targets

- Larger models encoding more general information
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Related approaches

Generative Adversarial Networks (GANS):

- Highly expressive

- Work in the direction of GANSs for lattice

Urban, Pawlowski 1811.03533 Al-generated faces (GAN)
Zhou, Endrédi, Pang, Stocker 1810.12879

Shen & Liu 1612.05363

Variational AutoEncoders (VAES):

- Can also learn meaningful directions in the prior
variables

However: No access to g(¢)... hard to make
exact!

Al-generated faces (VAE)

37
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Transfer learning

Both parameter transfer and volume transfer are

highly effective for lattice field theory.

Abbott, et al. 2211.07541

1 With transfers
g —— Train from scratch o

2 . o s FJ:.. ..................................... -
Model _ 1 ||~ Retrainfroms=025"""""""+" "7 """ Without transfer +
. N |
quality = | !
: I

(ESS) - T e A —————————————— &+ : ................................................................................................... .:.

| f | |
! I
2 g | |

0 3000 6000 9000 12000 15000
Training time (gradient steps)

- Schwinger model [U(1) gauge theory + fermions]
- Parameter transfer k = 0 — 0.25 — 0.263(x,)

Boyda, GK, ... PRD103 (2021) 074504

0.5
0.4 - With transfer
MOdel 0.3 -
quality
(ESS) 0.2 -
0.1 7 Without transfer
0.0
0 2000 4000 6000 8000 10000

Training time (gradient steps)

- SU(N) gauge theory
- Volume transfer 8 X 8 — 16 X 16 (red)
- Directly start at 16 X 16 (black)
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Hyperparameters can make a big difference

Optimization algorithm, hyperparameters,
and initialization have strong effects on training rate.

Abbott, et al. 2211.07541

— Kaiming, width=1 = Xavier, gain=1
= Adam SGD = Adadelta Kaiming, width=2 = Xavier, gain=2
Model S py—
quality 0.5 /
(ESS) "
0.0 =
0 50000 100000 150000 0 50000 100000 150000

Training time (gradient steps) Training time (gradient steps)
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New paradigms

Partition functions
(e.g. for thermodynamics)

Parameter dependence

Gerdes+ (2022) 2207.00283
Singha+ (2022) 2207.00980

Correlated samples
Transformed replica exchange

Sign problems
Lawrence+ PRD103 (2021) 114509
Rodekamp+ PRB106 (2022) 125139
Pawlowski & Urban (2022) 2203.01243

Practical gains

- Embarrassingly parallel sampling

- Storage-free ensembles

</

Beyond critical slowing down

Nicoli+ PRE101 (2020) 023304
Nicoli+ PRL126 (2021) 032001
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Wlth U ~ q(U),
_ ¢ —SLUI _
and 13“ =—logZ
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(e.g. Feynman-Hellmann)

e “Shorter” distance to flow

* Correlations give noise reduction

Quenched QCD, 8 =6.0, M, ~ 1 GeV

0.985 -
0.980 -

0.975 -

alM .

0.969 -

0.960 -

0.570 A

V =8 % 16
v
/\
L]
heatbath ensembles

A € reweighting

[0 flowed ensembles
-0.01 Oe 0.01

Anisotropy factor A

Near-term applications

Correlated sampling PRD109 (2024) 094514

Replica exchange with flows 2404.11674

e “Shorter” distance to flow

* Flows can be easily inserted into

existing PT procedures

Estimate
derivative

-
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A
x5 error
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Method




Integral deformations for noisy observables

Lattice integrands are often holomorphic, allowing the integration contour to be
deformed without bias.

_1 ~S(¢) — lJ -S® 6(
O=7] 00w =] Do

* Defines a modified observable, which may
have improved variance:

O(¢) = det J(p)e SED=SDI6(J(h))

(Q(#)) = (O(9))
Var[@(¢)] # Var[O(¢)]

Detmold, GK, Wagman, Warrington PRD102 (2020) 014514



Learning the integration contour

The choice of f: ¢ — ¢ defines M, Q(¢), and the variance.

Parameterize f(¢@; @w) then minimize variance.
- Caveat: Complex analyticity

- Caveat: SU(N) variables
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