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Celebrating the Meeting of Two Histories

400 BC

Democritus’ Atomic Theory
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Mid XX Century

Modern Day Particle Physics

2024

Nobel Prize

700 BC

Homer and Hesiod Automata

1950

Alan Turing Seminal Work

2024

Nobel Prize



“ Artificial Intelligence is the quest of 
creating machines that think and 
act intelligently
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An operational 
definition of 
Machine 
Learning by 
Tom M. Mitchell
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A computer program is 
said to learn from 
experience E with 
respect to some class of 
tasks T and 
performance measure P 
if its performance at 
tasks in T, as measured 
by P, improves with 
experience E



Machine Learning in HEP
A flourishing area of research

https://iml-wg.github.io/HEPML-LivingReview/

5

https://iml-wg.github.io/HEPML-LivingReview/


Machine Learning in HEP
@IPPP: Advancing AI in Phenomenology

6



Outline
Looking for Unexpected New Physics

1. Semi-supervised Anomaly Detection (AD) to search for New 
Physics -> Collider Physics

2. Artificial Intelligence to Explore Beyond the Standard Model 
(BSM) Parameter Spaces -> BSM Physics

3. Machine Learning to Look for Exotic Dark Matter -> 
Astroparticle Physics
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               1) Semi-supervised Anomaly 
Detection to search for New 
Physics
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AD for New Physics Searches
Why

Semi-supervised AD promises generic New Physics discriminants
● Semi-supervision: Trained only on Standard Model background 

events
● AD: A single discriminant that measures how different from the 

Standard Model a process is
● Many different semi-supervised AD models in the ML market

○ No free lunch theorem suggests that its likely that no single 
AD model will outperform the others
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AD for New Physics Searches
Previous work

HBOS: Histogram-Based Outlier System
● Fit a histogram to all features
● Inline score = the sum of the heights of the bins 

where an event lies ~ binned likelihood
iForest: Isolation Forest
● Recursively random partition the feature space with 

trees of fixed depth
● Inline score = the amount of nodes an event 

traverses in an ensemble of trees
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MCR, N. F. Castro, and R. Pedro. "Finding new 
physics without learning about it: anomaly 
detection as a tool for searches at colliders." The 
European Physical Journal C 81.1 (2021): 27. 
[2006.05432]
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AD for New Physics Searches
Previous work

Auto-Encoder
● Reconstruction Error-based (~manifold embedding)

● Discriminant: Reconstruction error
○ BSM events should have higher reconstruction error (“more 

different”)
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MCR, N. F. Castro, and R. Pedro. "Finding new 
physics without learning about it: anomaly 
detection as a tool for searches at colliders." The 
European Physical Journal C 81.1 (2021): 27. 
[2006.05432]



AD for New Physics Searches
Previous work

Deep Support Vector Data Description
● Distance to mean-based (but also manifold embedding)

● Discriminant: Distance to mean
■ BSM events should be further away from centre
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MCR, N. F. Castro, and R. Pedro. "Finding new 
physics without learning about it: anomaly 
detection as a tool for searches at colliders." The 
European Physical Journal C 81.1 (2021): 27. 
[2006.05432]
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AD for New Physics Searches
Previous work

When applied to a collection of different BSM candidates: all models 
provided sensitivity while capturing different notions of anomaly

13

MCR, N. F. Castro, and R. Pedro. "Finding new 
physics without learning about it: anomaly 
detection as a tool for searches at colliders." The 
European Physical Journal C 81.1 (2021): 27. 
[2006.05432]



AD for New Physics Searches
Previous work

AD shows promise for generic New Physics searches. However:
● The discriminant for Auto-Encoders is a reconstruction error

○ Is the lore “the better the reconstruction the better the 
discrimination” correct?

● Some hyperparameters of the models have no semi-supervised metric 
to use for tuning (the “untunables”)
○ How does this affect the sensitivity?

● All measurements of sensitivity used are fundamentally supervised
○ How can we communicate semi-supervised limits on New Physics?
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MCR, N. F. Castro, and R. Pedro. "Finding new 
physics without learning about it: anomaly 
detection as a tool for searches at colliders." The 
European Physical Journal C 81.1 (2021): 27. 
[2006.05432]



AD for New Physics Searches
Ongoing work [PRELIMINARY]

The reconstruction quality of the Auto-Encoder is not a good proxy for its 
discrimination
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[WIP] Fernando Abreu de Souza, Maura Barros, 
Céu Neiva, MCR., N. F. Castro, and R. Pedro. 
[2502/03.ABCDE]

Also MSc Thesis by Ms. Patrícia Ferreira



AD for New Physics Searches
Ongoing work [PRELIMINARY]

Sensitivity to New Physics is *largely* independent of the untunable 
hyperparameters, and the sensitivity is *capped* by the sensitivity of the 
best feature
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[WIP] Fernando Abreu de Souza, Maura Barros, 
Céu Neiva, MCR., N. F. Castro, and R. Pedro. 
[2502/03.ABCDE]

Also MSc Thesis by Ms. Patrícia Ferreira



AD for New Physics Searches
Ongoing work [PRELIMINARY]

Proposal for a semi-supervised statistical test based on permutation tests
● Prepare a “control” test set with only Standard Model events
● Prepare an “analysis” test set which can be contaminated with BSM
● Measure how the distributions differ using the Cramér–von Mises test

● Prepare P(CvM | H0) with permutations
● Compute p-value of observed CvM
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[WIP] Fernando Abreu de Souza, Maura Barros, 
Céu Neiva, MCR., N. F. Castro, and R. Pedro. 
[2502/03.ABCDE]

Also MSc Thesis by Ms. Patrícia Ferreira



AD for New Physics Searches
Ongoing work [PRELIMINARY]
● No strong relation 

between ROC AUC and 
p-values

● Deep learning models 
exhibit higher 
sensitivity, but not for all 
hyperparameters

● Not shown: a similar 
study with the test

produced no sensitivity
18

[WIP] Fernando Abreu de Souza, Maura Barros, 
Céu Neiva, MCR., N. F. Castro, and R. Pedro. 
[2502/03.ABCDE]

Also MSc Thesis by Ms. Patrícia Ferreira

At s/√b=2 contamination



               2) Artificial Intelligence to 
Explore Beyond the Standard 
Model Parameter Spaces
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AI for BSM
Why

Studying highly constrained and multidimensional BSM parameter spaces 
is becoming a bottleneck for phenomenological studies purely due to 
practical reasons

Studies often simplify the problem, reducing their generalisation and 
phenomenological scope

Computational 
Routine
(SPheno, SoftSUSY, 
MicrOMEGAS, 
Calchep, etc)

O(θ)θ Valid?
Yes 
or No

Sample a 
point θ

Constraints 
(experimental 
measures, 
limits, 
theoretical, etc)
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AI for BSM
Why

Considering that the observable computation is the heavy step, early AI/ML 
attempts tried to replace it, either by predicting the observables 
(regression) or predicting if a point is valid (classification)

Computational 
Routine
(SPheno, SoftSUSY, 
MicrOMEGAS, 
Calchep, etc)

O(θ)θ Valid?
Yes 
or No

Sample a 
point θ

Constraints 
(experimental 
measures, 
limits, 
theoretical, etc)
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AI for BSM
Why
● These methodologies require large amounts of training data to cover 

the whole parameter space
● Predicting the observables using a regressor:

○ If training data do not cover the whole parameter space: might 
map the parameter to observables incorrectly

● Predicting whether a point is valid using a classifier:
○ If training data do not cover the whole parameter space: wrong 

guess

For highly constrained and realistic scans, it is computationally prohibitive 
to get enough valid points to use some of these methods
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AI for BSM
Previous work

23

de Souza, Fernando Abreu, et al. "Exploring 
parameter spaces with artificial intelligence and 
machine learning black-box optimisation 
algorithms." Physical Review D 107 (2023) 3, 
035004. [2206.09223]

Computational Routine
(SPheno, SoftSUSY, 
MicrOMEGAS, 
Calchep, etc)

O(θ)θ C(O(θ))

Optimisation 
Algorithm

Constraints 
(experimental 
measures, limits, 
theoretical, etc)

Black Box

Reframed the problem: black box 
optimisation
● How far is a point from being valid

● Such that the set of valid points

● or, equivalently

Finding the valid points is the same as 
minimising C(O)



AI for BSM
Previous work
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de Souza, Fernando Abreu, et al. "Exploring 
parameter spaces with artificial intelligence and 
machine learning black-box optimisation 
algorithms." Physical Review D 107 (2023) 3, 
035004. [2206.09223]

Studied three different classes of 
algorithms, each embodying different 
exploration exploitation trade-offs
● Bayesian Optimisation: Tree-Parzen 

Estimator (TPE) 
● Genetic Algorithm: Non-dominated 

Sorting Genetic Algorithm II (NSGA-II)
● Evolutionary Strategy: Covariant Matrix 

Approximation  Evolution Strategy 
(CMAES)

They do not require data prior to the run as 
they adapt dynamically to the search



AI for BSM
Previous work
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de Souza, Fernando Abreu, et al. "Exploring 
parameter spaces with artificial intelligence and 
machine learning black-box optimisation 
algorithms." Physical Review D 107 (2023) 3, 
035004. [2206.09223]

Both evolutionary algorithms work similarly and 
show the greatest promise
● Initial population created randomly
● Sort population by fitness (i.e. by C(O))
● Generate an offspring population
● Repeat until stopping criteria

For a symbolic regression application using genetic 
programming see S. AbdusSalam, S. Abel, MCR “Symbolic 
Regression for Beyond the Standard Model Physics”  Physical 
Review D 111 (2025) 1, 015022 [2405.18471]

Genetic

θ1

θ2

θ1

θ2

θ1

θ2

Evolutionary Strategy



AI for BSM
First Realistic Scan

First realistic scan on the(Real) Z3 3 Higgs Doublet 
Model parameter space
● Multidimensional: 16 real parameters
● Highly Constrained: 61 experimental and 

theoretical constraints
○ STU, Boundedness from Below, Perturbative 

Unitarity, LHC Higgs Couplings, LHC New 
Scalar Bounds, B->S Gamma

● Less than 1:10 billion random search efficiency (1 
week on 16 cores produces O(1) points)

● Hitherto studies restricted to alignment limits
● CMAES seems to fail to explore at all 26

Crispim Romão, Jorge, and MCR. "Combining 
evolutionary strategies and novelty detection to go 
beyond the alignment limit of the Z 3 3HDM." 
Physical Review D 109.9 (2024): 095040. 
[2402.07661]



AI for BSM
First Realistic Scan
● Fixed the lack of exploration by endowing CMAES 

with novelty detection reward (based on HBOS)
● Found new phenomenological realisations that 

have so far been overlooked
● Overall obtained orders of magnitude in sampling 

efficiency
○ Up to eight orders of magnitude (~ 1 second:3 

years) compared to random sampling
○ Up to four orders of magnitude compared to 

alignment limit sampling

[WIP]: Extending to C3HDM with DM constraints 27

Crispim Romão, Jorge, and MCR. "Combining 
evolutionary strategies and novelty detection to go 
beyond the alignment limit of the Z 3 3HDM." 
Physical Review D 109.9 (2024): 095040. 
[2402.07661]



AI for BSM
Ongoing work [PRELIMINARY]

Now working on a T1-2-A Scotogenic that 
accommodates g-2 A. Alvarez, et al 2023
● Expanded the parameter space beyond 

simplifications made in previous study
○ With Casas-Ibarra parameterisation

■ 25 + 12 = 37 parameters
■ 26 + 6 = 32 constraints

○ And without
■ 25 + 18 = 43 parameters
■ 26 + 6 = 32 constraints

● Introducing a novel approach: multi-objective 
optimisation using NSGA-3 28

[WIP] Fernando Abreu de Souza, MCR., N. F. 
Castro, Andreas Karle, Werner Porod
[2502/03.ABCDE]

Wikipedia



AI for BSM
Ongoing work [PRELIMINARY]
● Drastically improved coverage of the parameter space

● New phenomenological realisations and potential signatures

29

[WIP] Fernando Abreu de Souza, MCR., N. F. 
Castro, Andreas Karle, Werner Porod
[2502/03.ABCDE]



               3) Machine Learning to Look 
for Exotic Dark Matter
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ML for Microlensing
Why
● All evidence for Dark Matter is 

gravitational. Nonetheless, the dominant 
paradigm has been field theoretical

● With no direct (or indirect) detection of 
particle Dark Matter, alternatives gain 
traction

● One such alternative is that (at least a 
portion of) Dark Matter is composed by 
celestial dark objects

31

dx.doi.org/10.1093/mnras/
249.3.523

dx.doi.org/10.1093/mnras/
249.3.523

ESA astro-ph/0604561, 
doi:10.1038/nature04
805



ML for Microlensing
Why
● A famous example of these 

would be primordial black holes
● These objects could be detected 

via gravitational microlensing, 
but efforts in this direction have 
only focused on point-like 
microlensing events
○ What if more exotic 

celestial dark objects 
compose the bulk of Dark 
Matter?

32

Wikipedia

Niikura, H, et al - 
Subaru/HSC 
observation

Green, Kavanagh  2020



ML for Microlensing
Previous work
● Croon, McKeen, Raj 2020 proposed that 

extended dark objects such as Boson 
Stars and Navarro-Frenk-White (NFW) 
subhalos could be detected through 
microlensing

● In particular, Boson Stars are expected to 
exhibit unique light curve profiles due to 
the appearance of symmetric caustics

33

MCR, and Djuna Croon. "Microlensing signatures 
of extended dark objects using machine learning." 
Physical Review D 109.12 (2024): 123004. 
[2402.00107]



ML for Microlensing
Previous work

Tested the sensitivity to different objects of 
Optical Gravitational Lensing Experiment 
(OGLE) 
● Boson Stars
● NFW subhalos
● Point-like Microlensing
● Variable sources

○ Cataclysmic Variables (CV)
○ RR Lyrae & Cepheid Variables 

(VARIABLE)
○ Mira long-period variables (LPV)

34

MCR, and Djuna Croon. "Microlensing signatures 
of extended dark objects using machine learning." 
Physical Review D 109.12 (2024): 123004. 
[2402.00107]



ML for Microlensing
Previous work

More importantly:
● Microlensing surveys should be 

especially sensitive to Boson 
Stars, with the potential to have a 
positive discovery with the 
possibility of constraining their 
parameter space

● NFW subhalos, are also detectable, 
but would likely pass as point-like 
lensing phenomena

35

MCR, and Djuna Croon. "Microlensing signatures 
of extended dark objects using machine learning." 
Physical Review D 109.12 (2024): 123004. 
[2402.00107]



ML for Microlensing
Previous work

While exciting, some shortcomings and questions stand out
● Dataset does not include possible sources of misclassification, 

such as binary lenses
● Did not include signal-less light curves
● Simulation made use of a simplistic noise model
● OGLE does not have public raw datasets
● How does the methodology apply to the upcoming Legacy Survey 

of Space and Time (LSST) conducted at the Vera Rubin 
observatory?

● Analysis is purely offline, could it be adapted as an alert system for 
brokers?

36

MCR, and Djuna Croon. "Microlensing signatures 
of extended dark objects using machine learning." 
Physical Review D 109.12 (2024): 123004. 
[2402.00107]



ML for Microlensing
Ongoing work [PRELIMINARY]

Now analysing the sensitivity for the upcoming 
LSST
● Vera Rubin observations simulated using 

rubin-sim
● Included Binary lenses and Constant light 

curves
● Developed an AD methodology based on 

iForest trained on Constant to find 
signal-full candidates

37

[WIP]MCR, Djuna Croon, and Daniel Godines 
[2502/03.ABCDE]



ML for Microlensing
Ongoing work [PRELIMINARY]
● Showed how to use the AD for online alerts
● The cut is especially sensitive to certain regions of the astrophysical 

parameters

38

[WIP]MCR, Djuna Croon, and Daniel Godines 
[2502/03.ABCDE]



ML for Microlensing
Ongoing work [PRELIMINARY]
● Conducted an offline analysis on the light curves that survive the cut
● More difficult to isolate different microlensing classes than OGLE
● However, the prospect of positive Boson Star detection remains

39

[WIP]MCR, Djuna Croon, and Daniel Godines 
[2502/03.ABCDE]
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Conclusions

 



Conclusions

● AI and ML are here to stay and represent a new era in 
computational Physics

● They offer unique approaches to search for New Physics
● More importantly they provide novel ways of looking for the 

unexpected
○ Semi-supervised methods can search for model agnostic 

signals
○ Search algorithms can quickly map viable parameter space 

regions and find novel phenomenological possibilities

And stay tuned for more progress in searching for New Physics by 
looking for the unexpected! 41



               
Thank you!
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Get in touch!
miguel.romao@durham.ac.uk


