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1 Artificial Intelligence is the quest of
creating machines that think and
act intelligently

VoL. LIX. No. 236.] [October, 1950
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I—COMPUTING MACHINERY AND
INTELLIGENCE

By A. M. TURING

1. The Imitation Game.

I PROPOSE to consider the question, ‘Can machines think?” This should
begin with definitions of the meaning of the terms ‘machine’ and
‘think’. The definitions might be framed so as to reflect so far as




An operational
definition of
Machine
Learning by
Tom M. Mitchell

A computer program is
said to learn from
experience E with
respect to some class of
tasks T and

performance measure P
if its performance at
tasks in T, as measured
by P, improves with
experience E




Machine Learning in HEP

A flourishing area of research
https://iml-wg.qgithub.io/HEPML-LivingReview/

HEPML-LivingReview

A Living Review of Machine Learning for Particle Physics

Modern machine learning techniques, including deep learning, is rapidly being applied, adapted, and developed for high energy physics.
The goal of this document is to provide a nearly comprehensive list of citations for those developing and applying these approaches to
experimental, phenomenological, or theoretical analyses. As a living document, it will be updated as often as possible to incorporate the
latest developments. A list of proper (unchanging) reviews can be found within. Papers are grouped into a small set of topics to be as
useful as possible. Suggestions are most welcome.


https://iml-wg.github.io/HEPML-LivingReview/

Machine Learning in HEP
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Outline
Looking for Unexpected New Physics

Semi-supervised Anomaly Detection (AD) to search for New
Physics -> Collider Physics

Artificial Intelligence to Explore Beyond the Standard Model
(BSM) Parameter Spaces -> BSM Physics

Machine Learning to Look for Exotic Dark Matter ->
Astroparticle Physics



Detection to search for New
Physics

‘ 1) Semi-supervised Anomaly



AD for New Physics Searches
Why

Semi-supervised AD promises generic New Physics discriminants

e Semi-supervision: Trained only on Standard Model background
events

e AD: A single discriminant that measures how different from the
Standard Model a process is

e Many different semi-supervised AD models in the ML market

o No free lunch theorem suggests that its likely that no single
AD model will outperform the others



MCR, N. F. Castro, and R. Pedro. "Finding new
physics without learning about it: anomaly
detection as a tool for searches at colliders." The

AD fOr NeW PhYSiCS Searches [Ezté%)ggzz:;/}ysica/Journa/C81.1 (2021): 27.

Previous work

HBOS: Histogram-Based Outlier System
e Fit a histogram to all features
e Inline score =the sum of the heights of the bins
where an event lies ~ binned likelihood
iForest: Isolation Forest
e Recursively random partition the feature space with

x2

trees of fixed depth PR
o Q O o
e Inline score = the amount of nodes an event AL 59 o g
. 9 o
traverses in an ensemble of trees 00 Lol © o o‘To
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MCR, N. F. Castro, and R. Pedro. "Finding new
physics without learning about it: anomaly
detection as a tool for searches at colliders." The

AD fOr NeW PhYSiCS Searches [Ezté%)ggzz:;/}ysica/Journa/C81.1 (2021): 27.

Previous work

Auto-Encoder
e Reconstruction Error-based (~manifold embedding)

Encoder Decoder
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e Discriminant: Reconstruction error
o BSM events should have higher reconstruction error (“more
different”)

11



AD for New Physics Searches

Previous work

Deep Support Vector Data Description
e Distance to mean-based (but also manifold embedding)

z2

1
I = —
o o N
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MCR, N. F. Castro, and R. Pedro. "Finding new
physics without learning about it: anomaly
detection as a tool for searches at colliders." The
European Physical Journal C 81.1 (2021): 27.
[2006.05432]
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e Discriminant: Distance to mean
m BSM events should be further away from centre
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Events / bin

AD for New Physics Searches

Previous work

When applied to a collection of different BSM candidates: all models
provided sensitivity while capturing different notions of anomaly

Ty
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MCR, N. F. Castro, and R. Pedro. "Finding new
physics without learning about it: anomaly
detection as a tool for searches at colliders." The
European Physical Journal C 81.1 (2021): 27.
[2006.05432]

10"k pp, Vs =13 TeV, L = 150 6" SM prediction
e HG 1.0 TV

anitised Features - HG 12 TeV
---HG 1.4 TeV
----W/o HG 1.0 TeV/
---W/o HG 1.2 TeV
— W/o HG 1.4 TeV
— FCNC

E 1 i 1 1 1 -
0 01 02 03 04 05 06 07 08 09 1
iForest output

Events / bin

10

10?

107!

1072

F " £ F
E pp, Vs=13TeV, L =150 f5' SM prediction 8 107 pp, Vs=13TeV,L=15015" SM prediction
E ) e HG 1.0 TeV — E ’ ' w HG 1.0 TV
E- Sanitised Features - HG 1.2 TeV i) i anitised Features -----HG 1.2 TeV
£ ---HG 1.4 TevV = ---HG 1.4 TeV
E - W/o HG 1.0 TeV 2 0 - Wio HG 1.0 TeV
E - Wlo HG 1.2 TeV w 1 --W/o HG 1.2 TeV
E — W/o HG 1.4 TeV — W/o HG 1.4 TeV
E — FCNC 1 — FCNC
E 1
4
E -] = 107'E
B bR L I I L 1, E [ L L L L L I
01 02 03 04 05 06 07 08 09 1 10 0 01 02 03 04 05 06 07 08 09 1
AE output Deep SVDD output

13



MCR, N. F. Castro, and R. Pedro. "Finding new
physics without learning about it: anomaly
detection as a tool for searches at colliders." The

AD fOI" NeW PhYSiCS Searches {:;%%)ggzzgqysicauouma/c81.1(2021): 27.

Previous work

AD shows promise for generic New Physics searches. However:

e The discriminant for Auto-Encoders is a reconstruction error

o Is the lore “the better the reconstruction the better the
discrimination” correct?
e Some hyperparameters of the models have no semi-supervised metric
to use for tuning (the “untunables”)

o How does this affect the sensitivity?

e All measurements of sensitivity used are fundamentally supervised
o How can we communicate semi-supervised limits on New Physics?

14



AD for New Physics Searches

Ongoing work [PRELIMINARY]

The reconstruction quality of the Auto-Encoder is not a good proxy for its

discrimination
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[WIP] Fernando Abreu de Souza, Maura Barros,

Céu Neiva, MCR., N. F. Castro, and R. Pedro.
[2502/03.ABCDE]

Also MSc Thesis by Ms. Patricia Ferreira
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[WIP] Fernando Abreu de Souza, Maura Barros,
Céu Neiva, MCR., N. F. Castro, and R. Pedro.
[2502/03.ABCDE]

AD for New PhySics SearCheS Also MSc Thesis by Ms. Patricia Ferreira
Ongoing work [PRELIMINARY]

Sensitivity to New Physics is *largely* independent of the untunable
hyperparameters, and the sensitivity is *capped* by the sensitivity of the
best feature
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[WIP] Fernando Abreu de Souza, Maura Barros,

Céu Neiva, MCR., N. F. Castro, and R. Pedro.
[2502/03.ABCDE]

AD for New PhySics SearCheS Also MSc Thesis by Ms. Patricia Ferreira
Ongoing work [PRELIMINARY]

Proposal for a semi-supervised statistical test based on permutation tests

Prepare a “control” test set with only Standard Model events
Prepare an “analysis” test set which can be contaminated with BSM
Measure how the distributions differ using the Cramér—von Mises test

CoM — /_ T \F(z) - G(x)2da

Prepare P(CvM | H,) with permutations
Compute p-value of observed CvM

17



AD for New Physics Searches
Ongoing work [PRELIMINARY]

e No strong relation
between ROC AUC and
p-values Al

e Deep learning models |

exhibit higher
sensitivity, but not for al'
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[WIP] Fernando Abreu de Souza, Maura Barros,
Céu Neiva, MCR., N. F. Castro, and R. Pedro.
[2502/03.ABCDE]

Also MSc Thesis by Ms. Patricia Ferreira
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2) Artificial Intelligence to
Explore Beyond the Standard
Model Parameter Spaces



Al for BSM

Why

Studying highly constrained and multidimensional BSM parameter spaces
is becoming a bottleneck for phenomenological studies purely due to

practical reasons

Sample a

point 6

Computational
Routine

(SPheno, SoftSUSY,
MicrOMEGAS,
Calchep, etc)

0(6)

Constraints
(experimental
measures,
limits,
theoretical, etc)

Valid?
Yes
or No

Studies often simplify the problem, reducing their generalisation and
phenomenological scope
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Al for BSM
Why

Considering that the observable computation is the heavy step, early Al/ML
attempts tried to replace it, either by predicting the observables
(regression) or predicting if a point is valid (classification)

Sample a
point 6

Computational
Routine

(SPheno, SoftSUSY,
MicrOMEGAS,
Calchep, etc)

0(6)

Constraints
(experimental
measures,
limits,
theoretical, etc)

Valid?
Yes
or No
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Al for BSM
Why

e These methodologies require large amounts of training data to cover

the whole parameter space
e Predicting the observables using a regressor:
o If training data do not cover the whole parameter space: might
map the parameter to observables incorrectly
e Predicting whether a point is valid using a classifier:
o If training data do not cover the whole parameter space: wrong

guess

For highly constrained and realistic scans, it is computationally prohibitive
to get enough valid points to use some of these methods

22



de Souza, Fernando Abreu, et al. "Exploring
parameter spaces with artificial intelligence and
machine learning black-box optimisation

Al for BSM a1 s
Previous work
Reframed the problem: black box

C(0O) (dimensions of ©)

optimisation

e How faris a point from being valid

C(O) - ma’x(07 _O + OLB) O - OUB) aLBO(dimensionsof@)QUB

. . Black Box
e Such that the set of valid points
* — onstraints

V — {0 : 9 E P S't’ 0(0) _ 0} 0 (Cso;‘;ﬁfhggzls%%lﬁme O(8) g}xpetrimetnt_al_ C(O(8))

e or, equivalently 7| eomecss theoretioa, o10)

V={0":0€Pst. 0 =argmin C(0)}

Optimisation
. . . . . Algorithm
Finding the valid points is the same as

minimising C(O)
23



Al for BSM

Previous work

Studied three different classes of
algorithms, each embodying different
exploration exploitation trade-offs
e Bayesian Optimisation: Tree-Parzen
Estimator (TPE)
e Genetic Algorithm: Non-dominated ;
Sorting Genetic Algorithm Il (NSGA-II) 0
e Evolutionary Strategy: Covariant Matrix
Approximation Evolution Strategy
(CMAES)
They do not require data prior to the run as
they adapt dynamically to the search

12

m; (TeV)
N A O ®

me (TeV)
N )

de Souza, Fernando Abreu, et al. "Exploring
parameter spaces with artificial intelligence and
machine learning black-box optimisation
algorithms." Physical Review D 107 (2023) 3,
035004. [2206.09223]

cMSSM, C(th n nghz)

Random TPE
At (TeV) A¢ (TeV)
NSGA-II CMA-ES
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Al for BSM

Previous work

Both evolutionary algorithms work similarly and
show the greatest promise

Initial population created randomly
Sort population by fitness (i.e. by C(0))
Generate an offspring population
Repeat until stopping criteria

For a symbolic regression application using genetic
programming see S. AbdusSalam, S. Abel, MCR “Symbolic
Regression for Beyond the Standard Model Physics” Physical
Review D 111 (2025) 1, 015022 [2405.18471]

de Souza, Fernando Abreu, et al. "Exploring
parameter spaces with artificial intelligence and
machine learning black-box optimisation
algorithms." Physical Review D 107 (2023) 3,
035004. [2206.09223]

Genetic
0 o
Illlzrll

[ I I I
EECEEEE

Evolutionary Strategy
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Al for BSM
First Realistic Scan

First realistic scan on the(Real) Z, 3 Higgs Doublet

Model parameter space

Multidimensional: 16 real parameters
Highly Constrained: 61 experimental and
theoretical constraints

o STU, Boundedness from Below, Perturbative

Unitarity, LHC Higgs Couplings, LHC New
Scalar Bounds, B->S Gamma

Less than 1:10 billion random search efficiency (1 2

week on 16 cores produces O(1) points)
Hitherto studies restricted to alignment limits
CMAES seems to fail to explore at all

Crispim Romao, Jorge, and MCR. "Combining
evolutionary strategies and novelty detection to go
beyond the alignment limit of the Z 3 3HDM."
Physical Review D 109.9 (2024): 095040.
[2402.07661]

ai, oz, as, Y1, 12 € [7; g] ; tan 3y, tan 3> € [0,10];
My, = Mp,, My, = my, € [125,1000] GeV;

May, May My, Myz € [100, 1000] GeV;

My, My, miy € [:tl[]",:l:l()q GeV?,

Random around alignment limit

e PreHT
e  Post HT

92— )

1.0 —0.5 0.0 0.5 1.0
sin(ag — )

CMAES

e PreHT
e Post HT

0.0 - '

sin(am

=1.0 —0.5 0.0 0.5 1.0

sin(a; — f1) 26



Crispim Romao, Jorge, and MCR. "Combining
evolutionary strategies and novelty detection to go
beyond the alignment limit of the Z 3 3HDM."

AI for BSM Physical Review D 109.9 (2024): 095040.

[2402.07661]

Fi rst Rea I i St i c S ca n Random around alignment limit

e Fixed the lack of exploration by endowing CMAES
with novelty detection reward (based on HBOS)
e Found new phenomenological realisations that
have so far been overlooked |
e Overall obtained orders of magnitude in sampling D
efficiency UITS ity s
o Up to eight orders of magnitude (~ 1 second:3
years) compared to random sampling
o Up to four orders of magnitude compared to

alignment limit sampling

HggF.ZZ

[WIP]: Extending to C3HDM with DM constraints 0910 Ll a2 27

HagFony



Al for BSM
Ongoing work [PRELIMINARY]

Now working on a T1-2-A Scotogenic that
accommodates g-2 A. Alvarez, et al 2023
e Expanded the parameter space beyond
simplifications made in previous study
o With Casas-lbarra parameterisation
m 25+ 12 =37 parameters
m 26+ 6 =32 constraints
o And without
m 25+ 18 =43 parameters
m 26+ 6 =32 constraints
e Introducing a novel approach: multi-objective
optimisation using NSGA-3

[WIP] Fernando Abreu de Souza, MCR., N. F.

Castro, Andreas Karle, Werner Porod
[2502/03.ABCDE]

Fermions Scalars
U, Wy Fy Fop S
SU2), 2 2112 1
Ul)y =11 0 01 0

f1 . .
] D H|
Al ¢ O @

f2(A) < £2(B)
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Al for BSM

[WIP] Fernando Abreu de Souza, MCR., N. F.

Castro, Andreas Karle, Werner Porod
[2502/03.ABCDE]

Ongoing work [PRELIMINARY]

e Drastically improved coverage of the parameter space
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e New phenomenological realisations and potential signatures

h-CMA-ES CI
1500 -
L0 /
. . B
%500 1000 1500

mpa = mx(]! (Ge\/)

S o o
[Ul? + [Uyal?

.
o

|

Il
apl
I | i

0
600 800 1000 1200

mpar (GeV)

1400 1600

29



for Exotic Dark Matter

‘ 3) Machine Learning to Look



ML for Microlensing
Why

All evidence for Dark Matter is
gravitational. Nonetheless, the dominant
paradigm has been field theoretical

With no direct (or indirect) detection of
particle Dark Matter, alternatives gain
traction

One such alternative is that (at least a
portion of) Dark Matter is composed by
celestial dark objects
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ML for Microlensing
Why

e A famous example of these
would be primordial black holes
e These objects could be detected
via gravitational microlensing,
but efforts in this direction have
only focused on point-like
microlensing events
o What if more exotic
celestial dark objects
compose the bulk of Dark
Matter?

s in the i-th difference image

£ 1500

Niikura, H, et al -
Subaru/HSC
observation

5000 10000 T5000

feo = Qco/wm

Green, Kavanagh 2020

I L L I I
2 102 106 10°3 10°

Mppn [Me)
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ML for Microlensing
Previous work

Croon, McKeen, Raj 2020 proposed that
extended dark objects such as Boson
Stars and Navarro-Frenk-White (NFW)
subhalos could be detected through
microlensing

In particular, Boson Stars are expected to
exhibit unique light curve profiles due to
the appearance of symmetric caustics

MCR, and Djuna Croon. "Microlensing signatures
of extended dark objects using machine learning."
Physical Review D 109.12 (2024): 123004.
[2402.00107]

—— Boson Star (7, = 1)
—— NFW Subhalo (7, = 1)

0.0 0.2 0.4 0.6 0.8 1.0
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ML for Microlensing
Previous work

Tested the sensitivity to different objects of

Optical Gravitational Lensing Experiment
(OGLE)

Boson Stars
NFW subhalos
Point-like Microlensing
Variable sources
o Cataclysmic Variables (CV)
o RR Lyrae & Cepheid Variables
(VARIABLE)
o Mira long-period variables (LPV)

MCR, and Djuna Croon. "Microlensing signatures

of extended dark objects using machine learning."

Physical Review D 109.12 (2024): 123004.
[2402.00107]

True label

ML [1.23e-01 1.20¢-04 0.00¢+00 0.4
_\'}f\\':l 15¢-01 0.00e+000.00e-+00 38601 4:166-01 0.00¢-+00;
| 0.2
| |
VARIABLE 8.09¢-05 1.21e-04 0.00e+000.00e-+00 0.00¢-+00 JRIS=10] 1
Jo.o
& = N N &
Y Q A &
~ N J A

&
&
N
&
Predicted label

OGLE-II Timestamps

1.0

02 /— ROC curve for BS (AUC = 0.73)
// —— ROC curve for ML (AUC = 0.65)
/

ROC curve for NFW (AUC = 0.62)

True Positive Rate (Positive label: 1)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (Positive label: 1)
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ML for Microlensing

Previous work
More importantly:

Microlensing surveys should be
especially sensitive to Boson
Stars, with the potential to have a
positive discovery with the
possibility of constraining their
parameter space

NFW subhalos, are also detectable,
but would likely pass as point-like
lensing phenomena

MCR, and Djuna Croon. "Microlensing signatures
of extended dark objects using machine learning."
Physical Review D 109.12 (2024): 123004.
[2402.00107]

10 Most Distinctive Boson Star Light Curves
w/ OGLE-II Timestamps

Predicted Label
¢ BS

« CV
LPV
e ML

e NFW
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MCR, and Djuna Croon. "Microlensing signatures
of extended dark objects using machine learning."
Physical Review D 109.12 (2024): 123004.

ML for Microlensing (2402.00107)

Previous work
While exciting, some shortcomings and questions stand out

Dataset does not include possible sources of misclassification,
such as binary lenses

Did not include signal-less light curves

Simulation made use of a simplistic noise model

OGLE does not have public raw datasets

How does the methodology apply to the upcoming Legacy Survey
of Space and Time (LSST) conducted at the Vera Rubin
observatory?

Analysis is purely offline, could it be adapted as an alert system for

brokers?
36



[WIPIMCR, Djuna Croon, and Daniel Godines
[2502/03.ABCDE]

ML for Microlensing

I Bs

Ongoing work [PRELIMINARY] o S,

0.30 I RRLyrae

=== Constant

Now analysing the sensitivity for the upcoming

LSST Zos

e Vera Rubin observations simulated using

rubin-sim
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signal-full candidates
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ML for Microlensing
Ongoing work [PRELIMINARY]

e Showed how to use the AD for online alerts
e The cutis especially sensitive to certain regions of the astrophysical
parameters
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ML for Microlensing
Ongoing work [PRELIMINARY]

Conducted an offline analysis on the light curves that survive the cut
More difficult to isolate different microlensing classes than OGLE
However, the prospect of positive Boson Star detection remains
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Conclusions




Conclusions

e Al and ML are here to stay and represent a new era in
computational Physics
e They offer unique approaches to search for New Physics
e More importantly they provide novel ways of looking for the
unexpected
o Semi-supervised methods can search for model agnostic
signals
o Search algorithms can quickly map viable parameter space
regions and find novel phenomenological possibilities

And stay tuned for more progress in searching for New Physics by
looking for the unexpected!
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Get in touch!
miguel.romao@durham.ac.uk




