FCC: a beginners guide

Higgs Maxwell Workshop 19/2/25

Guy Wilkinson University of Oxford and CERN

FCC-ee energy points and luminosity goals

FCC-ee: two ring synchrotron with top-up injection, giving very high lumi between 88 & 365 GeV

Four interaction points.

Four (+) energy points in baseline plan, others (*e.g.* Higgs pole) under consideration.

Flexibility in order of operation for all energies below the ttbar threshold.

FCC-ee energy points and luminosity goals

FCC-ee: two ring synchrotron with top-up injection, giving very high lumi between 88 & 365 GeV

Four interaction points.

Four (+) energy points in baseline plan, others (*e.g.* Higgs pole) under consideration.

Flexibility in order of operation for all energies below the ttbar threshold.

Higgs studies at FCC-ee

Central goal of FCC-ee: *model-independent* measurement of Higgs width and couplings with (<)% precision. Achieved through operation at two energy points.

10.8 ab⁻¹ at 240 GeV 2.2 x 10^6 ZH events 65k WW \rightarrow H events

~3 ab^{-1} at 350-365 GeV 370k ZH events 92k WW \rightarrow H events

Coupling	HL-LHC	FCC-ee (240-365 GeV)
κ_W [%]	1.5*	0.29
$\kappa_Z[\%]$	1.3*	0.11
$\kappa_g[\%]$	2*	0.68
κ_{γ} [%]	1.6*	0.18
$\kappa_{Z\gamma}$ [%]	10*	10.2
$\kappa_c [\%]$	-	0.96
$\kappa_t [\%]$	3.2*	3.1
κ_b [%]	2.5*	0.50
κ_{μ} [%]	4.4*	3.50
κ_{τ} [%]	1.6*	0.47
BR_{inv} (<%, 95% CL)	1.9*	0.12
${\rm BR}_{\rm unt}~({<}\%,95\%~CL)$	4*	0.72

- Sub-percent precision for most couplings, often with order of magnitude improvement on HL-LHC expectation (or for first time, *e.g.* H→ccbar).
- Higgs width measured \rightarrow model independent !
- Mass measured to a few MeV.
- Not shown here: high hopes for H→ssbar, and tantalising possibility to get close to SM expectation for H→e⁺e⁻ (unique to FCC-ee).

Precision electroweak

Precision EW measurements are central element of FCC-ee programme. At Z pole, FCC-ee will accumulate 10^5 more decays than LEP. If systematic challenge can be met, gain in indirect new physics sensitivity will be remarkable. Ditto WW threshold. Key feature: ability to measure E_b ultra precisely through resonant depolarisation !

Estimated statistical sensitivity of 180 keV, with E_{CM} uncertainty subdominant, a ~50x improvement on CMS result. Need to then match this sensitivity for the predicted value (`EW fit'); for this FCC-ee must measure the top mass precisely - foreseen!

Flavour physics & direct searches

Tera-Z will produce a huge number of b hadrons in a very clean environment. Many measurement opportunities that are highly complementary to LHCb Upgrade II. FCC-ee will also provide world's largest sample of 'background free' tau decays.

e.g. lepton universality tests with taus.

FCC (+ CEPC) is the *only* planned collider where b, c and T physics can be significantly advanced in the post HL-LHC / Belle II era. (Also great opportunities to measure 'on-shell' CKM elements in W decays).

Furthermore, high direct search potential from decays in Tera-Z sample *e.g.* heavy neutral leptons, with sensitivity complementary to LHC and SHiP

Status of project

Final report of Feasibility Study to be submitted end of March. Culmination of ~10 years work, of which physics & accelerator studies have been only one aspect.

For example, reference ring layout chosen from ~100 initial variants. Input considerations:

- Geology (test drillings underway);
- Surface constraints;
- Environment;
- Infrastructure;
- Machine performance.

Continual and ongoing engagement with local communities.

Technical, scientific and financial feasibility carefully scrutinised. Verdict on Mid-Term Report very positive.

Assumed timeline

Overall project + machine:

	2025-2027	'pre-TDR phase'	
	Late 2027 / early 2028	CERN Council approval decision	
	2033-2041	Civil engineering	
	2039-2043	Technical infrastructure installation	
	2041-2045	Accelerator installation	
	2046	Start of beam commissioning and operation	
	2048	Nominal beam operation	
Ex	periments:		
	Early 2028	Call for CDRs, formation of collaborations	
	2030	Submission of CDRs	
	2035	Submission of TDRs, start of construction	
	2041	Detector installation	
	2045	Start of commissioning	

FCC-hh: the infinity machine

FCC-hh could begin 10 years post FCC-ee, *i.e.* 2070. Eye-watering physics reach.

FCC-hh will have awesome direct search potential....

...and also complete our study of the Higgs with a precise measurement of the self-coupling.

And again, the physics will be *diverse*, just as at the LHC. All of the above, plus flavour physics, heavy ion physics, forward-physics facility *etc.*

Current baseline: 14T Nb₃Sn dipoles operating at 1.9K (but 4.5K looks feasible...), to allow for 85-90 TeV CoM. Progress on HTS could push this to above 100 TeV. Some breaking news: recent updates on power consumption extremely positive !

Backups

HZZ coupling for FCC-ee and linear colliders

Precision vs time, electricity usage, cost and carbon budget [arXiv:2412.13130].

Electricity for the two Higgs stages

(arrows indicate nominal run plan)