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Hello. My name is Koji Hashimoto, Professor of Graduate School of Science, Kyoto University. Let me explain about

the "Learning Physics Domain" that we are just now trying to create. This new transformative research area aims to

revolutionize fundamental physics by combining machine learning and physics.

Throughout its long history, physics has provided the most precise testing ground in the natural sciences, solving

problems in various natural hierarchies in collaboration with the mathematical sciences.

On the other hand, the field of machine learning is a major research field, a mathematical system that forms the

foundation of artificial intelligence and has seen explosive progress in recent years due to advances in computational

science. We are launching the transformative research area "Machine Learning Physics" to integrate these two major

fields.

In this area, we will tackle the most important challenges in fundamental physics, such as the discovery of new laws
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Deep Learning is changing particle physics  

b/c-tagging performance
- Promising performance compared to previous taggers

- ×3 better light jet rejection (at b-jet eff 70%) than DeepJet
- ×2 better light rejection + ×2 better b-jet rejection (at c-jet eff 35 %) than DeepJet
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Flavor Tagging Performance CMS-DP-2024-066

b-tagging
c-tagging



JET TAGGING:  WINDOW TO THE NEW PHYISICS  

Parton  →hadron 
quark 

anti-quark 

High  pT H, Z, top  
is important for BSM study  
and they maybe highly boosted 

Mostly talking about top vs  QCD classification in this talk  



Training for classification

Introduction Neural Network Crash Course A spectral function of jet substructure Spectral Analysis of Jet Substructure: Higgs Spectral Analysis of Jet Substructure: Sgluon Spectral Analysis of Jet Substructure: A Quick Sketch on Top Jets Spectral Analysis of Jet Substructure: Understanding Neural Networks Conclusion

Neural Network Crash Course: What is an Artificial Neural Network?

The artificial neural network is a biology inspired framework of modelling a
function.

Basic architectural unit: neuron
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'(·) '(wijxj + bi )

inputs weights bias activation output reduced notation

Build a network architecture
x1

x2

x3

ŷ

This kind of feed-forward network’s output ŷ(x1, · · · , xn) could
approximate an output of a function y(x1, · · · , xn) if proper weights and
biases are assigned.
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training:     wij,bi
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minimization of loss function  

L(y, ŷ)
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✅表現力　expressive power 

✅データを学習　learn from data    

✅微分可能Simple linear algebra + activation　 ’s represent likeliness to be y ̂y

data pool of images 

y: truth　　 
1→(1, 0, 0, ..) 
2→(0, 1, 0,…) 
3→(0, 0, 1, …)

(28x28) の画像データをn 個

output  
 ̂y = ( ̂y1, ̂y2 . . . . . ̂y10), ∑

i

̂yi = 1

̂yi =
exp(xi)

∑j exp(xj)

TRANSFORMER  
GNN 



1.  “TRANSFORMER” :SELF ATTENTION 

1.Attention Matrix    All particle-particle attention calculated at once, while GNN takes 
care nearby information only   

2. All feature can be included.  

3.Each layer produce  effect , while MLP need three steps to take into acctound the effect.  

4. W can be  chosen so that X and    can be added.  Freedom choose attention pair.  

5.skip connection-no information loss X → X’→X’’

α = QKT

X3

δX

output size = input size  

Tough for memory, calculation.  Physics may allow more compact descriptions.  　

X′￼ = X + δX, δX = α ⋅ V ≡ softmax ( QKT

d ) ⋅ V Q = XWQ, K = XWK, V = XWV

X: n( #particle in the jet ) x (feature of particle)

Pro 

Con 

Transformation before MLP



Particle Transformer for Jet Tagging

Table 1. Jet tagging performance on the JETCLASS dataset. ParT is compared to PFN (Komiske et al., 2019b), P-CNN (CMS Collaboration,
2020b) and the state-of-the-art ParticleNet (Qu & Gouskos, 2020). For all the metrics, a higher value indicates better performance. The
ParT architecture using plain MHAs instead of P-MHAs, labelled as ParT (plain), is also shown for comparison.

All classes H ! bb̄ H ! cc̄ H ! gg H ! 4q H ! `⌫qq0 t ! bqq0 t ! b`⌫ W ! qq0 Z ! qq̄
Accuracy AUC Rej50% Rej50% Rej50% Rej50% Rej99% Rej50% Rej99.5% Rej50% Rej50%

PFN 0.772 0.9714 2924 841 75 198 265 797 721 189 159
P-CNN 0.809 0.9789 4890 1276 88 474 947 2907 2304 241 204
ParticleNet 0.844 0.9849 7634 2475 104 954 3339 10526 11173 347 283
ParT 0.861 0.9877 10638 4149 123 1864 5479 32787 15873 543 402
ParT (plain) 0.849 0.9859 9569 2911 112 1185 3868 17699 12987 384 311

Table 2. Particle input features used for jet tagging on the JETCLASS, the top quark tagging (TOP) and the quark gluon tagging (QG)
datasets. For QG, we consider two scenarios: QGexp is restricted to use only the 5-class experimentally realistic particle identification
information, while QGfull uses the full set of particle identification information in the dataset and further distinguish between different
types of charged hadrons and neutral hadrons.

Category Variable Definition JETCLASS TOP QGexp QGfull

Kinematics

�⌘ difference in pseudorapidity ⌘ between the particle and the jet axis X X X X
�� difference in azimuthal angle � between the particle and the jet axis X X X X
log pT logarithm of the particle’s transverse momentum pT X X X X
log E logarithm of the particle’s energy X X X X
log pT

pT(jet) logarithm of the particle’s pT relative to the jet pT X X X X
log E

E(jet) logarithm of the particle’s energy relative to the jet energy X X X X
�R angular separation between the particle and the jet axis (

p
(�⌘)2 + (��)2) X X X X

Particle
identification

charge electric charge of the particle X — X X
Electron if the particle is an electron (|pid|==11) X — X X
Muon if the particle is an muon (|pid|==13) X — X X
Photon if the particle is an photon (pid==22) X — X X
CH if the particle is an charged hadron (|pid|==211 or 321 or 2212) X — X Xa

NH if the particle is an neutral hadron (|pid|==130 or 2112 or 0) X — X Xb

Trajectory
displacement

tanh d0 hyperbolic tangent of the transverse impact parameter value X — — —
tanh dz hyperbolic tangent of the longitudinal impact parameter value X — — —
�d0 error of the measured transverse impact parameter X — — —
�dz error of the measured longitudinal impact parameter X — — —

a
(|pid|==211) + (|pid|==321)*0.5 + (|pid|==2212)*0.2

b
(|pid|==130) + (|pid|==2112)*0.2.

compared to ParticleNet. Moreover, for the physics-oriented
metric, the background rejection, ParT improves over Par-
ticleNet by a factor of 3 for t ! bqq0, a factor of 2 for
H ! 4q, and about 70% for H ! cc̄. It is also clear that,
the earlier PFN and P-CNN models lag substantially behind
ParticleNet and ParT on this large dataset, amounting to up
to an order of magnitude difference in background rejection.
The large improvement of ParT is likely to lead to a sig-
nificant jump in the discovery potential for related physics
searches at the LHC.

Another observation is that there is a large variation in tag-
ging performance between signals of different types. The
best separation against the background q/g jets is achieved
for t ! b`⌫ and H ! `⌫qq0 signals – with the powerful
ParT model, these two can be selected almost perfectly, i.e.,
at an efficiency of more than 99% with nearly no contami-
nation from background jets. This opens up new territory
for jet tagging at the LHC, as these types of jets have not
been exploited for tagging so far.

Effectiveness of P-MHA. To quantify the effectiveness of
the P-MHA introduced in ParT, we carry out an ablation
study by replacing the P-MHA with a standard MHA, the re-
sulting architecture is then a plain Transformer and therefore
denoted as ParT (plain). We train ParT (plain) with the same
procedure as the full ParT and the performance is shown in
Table 1. A drop of 1.2% in accuracy is observed compared
to the full ParT, and the background rejection is reduced
by 20–30% for most signals. Note that, replacing P-MHA
with plain MHA implies that the particle interaction input is
discarded completely, but this does not lead to any reduction
of information content, as the interaction features defined in
Equation (3) are derived purely from the energy-momentum
4-vectors, which are already used as particle features via
the 7 kinematic variables presented in Table 2. Therefore,
the improvement of ParT over a plain Transformer indeed
arise from an efficient exploitation of the particle kinematic
information using the P-MHA.

Features in the context of jet classification  

Particle momentum 

charge,particle ID

displaced vertex 



THIS TALK: IMPROVEMENT OF  THE PARTICLE TRANSFORMER

generated at a center-of-mass energy of
→

s = 14 TeV using Pythia8 [67], with fast detector
simulation by Delphes [68]. The simulation does not incorporate e!ects from multiple parton
interactions or pileup. Jet clustering is carried out using the Anti-kT algorithm with a radius
parameter of R = 0.8, based on Delphes E-Flow objects. The dataset includes jets with
transverse momentum in the range pT ↑ [550, 650] GeV and pseudo-rapidity constrained to
|ω| < 2. For top quark events, a valid jet must be located within !R = 0.8 of a hadronically
decaying top quark, with all three decay products of the top also confined within !R = 0.8
from the jet axis. The primary background process considered is QCD dijet production.
This dataset consists of one million tt̄ events and an equal number of QCD dijet events.
Following the standard data split, we allocate 1.2 million events for training, 400,000 for
validation, and 400,000 for testing. The dataset is widely used in previous studies, allowing
for direct performance comparisons of existing models. 2

Table 1: Performance of di!erent networks for top jet classification. Results for networks
without an asterisk are taken from their respective references. Plain Transformer was
trained from scratch using the structure described in Appendix A.

Accuracy AUC 1/εB(εs = 0.5) 1/εB(εs = 0.3) Parameters

ParticleNet[54] 0.940 0.9858 397 ± 7 1615 ± 93 370K
PFN[53] ↓ 0.9819 247 ± 3 888 ± 17 86.1K
rPCN[69] ↓ 0.984 364 ± 9 1642 ± 93 ↓

Lorentz invariance based networks
PELICAN[35] 0.9426 0.987 ↓ 2250 ± 75 208K
LorentzNet[70] 0.942 0.9868 498 ± 18 2195 ± 173 224K
L-GATr[71] 0.942 0.9870 540 ± 20 2240 ± 70 –

Attention based networks
ParT[49] 0.940 0.9858 413 ± 6 1602 ± 81 2.14M
MIParT[50] 0.942 0.9868 505 ± 8 2010 ± 97 720.9K
Mixer[21] 0.940 0.9859 416 ± 5 – 86.03K
OmniLearn[72] 0.942 0.9872 568 ± 9 2647 ± 192 1.6M
Plain Transformer→ 0.927 0.979 362 ± 7 780 ± 73 1.7M
IAFormer→ 0.942 0.987 510± 6 2012± 30 211K

Table 1 presents the classification performance of IAFormer for top jet classification.
IAFormer is trained for 23 epochs, with a batch size of 256, with early stopping set for
5 epochs. The AdamW optimizer [73] with an initial learning rate of 5 ↔ 10↑4 and the
Cosine annealing scheduler is used to adjust the learning rate during the training. Two
input datasets are considered, particle kinematics, with dimensions X = (100, 11), with a
maximum of one hundred particles and 11 features per particle. A second dataset of the
pairwise interaction I, which encodes 6 features for each particle pair and total dimension
(100, 100, 6). Other networks are trained with the same hyperparameter setup, but trained
for 20 epochs. After training, the network performance is evaluated using various met-
rics, including classification accuracy, Area Under the ROC Curve (AUC), and background
rejection at signal e"ciencies of 0.3 and 0.5.

2
It should be noted that there is an e!ective class imbalance near the top quark mass. The tt̄ sample

exhibits a pronounced peak around 170 GeV, whereas the mass of the QCD jets is concentrated near zero,

resulting in a tiny overlap between their distributions. This disparity makes it particularly challenging to

discern fine-grained di!erences among high-performance neural networks. Therefore, we use several measures

to compare the network performance.
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Yellow bands highlight our works! 
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    1.    TRANSFORMER  FOR PARTON SHOWER+HADRONIZATION  
                                       “Ahmed Hammad, & MN              arXiv 2404 14677  JHEP 06 (2024) 176  

• Hard Process = Partons(quarks and gluons)  {y}  
• a jet:   P(hadrons in jets | parton ~ jet ) = 

 

• jet with substructure      

• Maybe  several  fatjets in an event (factorization)      

 

P({xi} |{y})

P({xi} |{yα})

P({xi}, {x′￼j}, {yα}, {y′￼β}) ∼ P({xi} |{yα})P({x′￼i} |{y′￼β}) P({yα , y′￼β})

We need the network forcusing on partons(subjets/jets) vs hadrons 



ATTENTION →CROSS Attention for P(h| subjets)  estimation  

REPEAT 
& Global MAX  
pooling  
→MLP 

Subjets (V, K)~ parton information
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Needed plots:

1. Network plot

2. minimum spanning tree + hierarchical dendogram (on how the hdbscan work)

3. four plots for subjets clustering for the top case

4. ROC for varying radius from 0.1 to 0.5 using CA

5. plot for the input subjets for the top and qcd jets

6. plot for the cross attention

7. ROCs for every thing.

PACS numbers:

I. INTRODUCTION
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⇤Electronic address: hamed@post.kek.jp
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multihead cross attention 

MLP mixer 

skip connection  X̃ = X + Oinput X 

A = Q × KT

Q 

 Z(i) = A(i)V
O = ∑ A(i)VW(i)

(Extract global information)

QCD threory! 



MLP MIXER
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mFigure 1: MLP-Mixer consists of per-patch linear embeddings, Mixer layers, and a classifier head.
Mixer layers contain one token-mixing MLP and one channel-mixing MLP, each consisting of two
fully-connected layers and a GELU nonlinearity. Other components include: skip-connections,
dropout, and layer norm on the channels.

they operate on each token independently and take individual rows of the table as inputs. The
token-mixing MLPs allow communication between different spatial locations (tokens); they operate
on each channel independently and take individual columns of the table as inputs. These two types of
layers are interleaved to enable interaction of both input dimensions.

In the extreme case, our architecture can be seen as a very special CNN, which uses 1⇥1 convolutions
for channel mixing, and single-channel depth-wise convolutions of a full receptive field and parameter
sharing for token mixing. However, the converse is not true as typical CNNs are not special cases of
Mixer. Furthermore, a convolution is more complex than the plain matrix multiplication in MLPs as
it requires an additional costly reduction to matrix multiplication and/or specialized implementation.

Despite its simplicity, Mixer attains competitive results. When pre-trained on large datasets (i.e.,
⇠100M images), it reaches near state-of-the-art performance, previously claimed by CNNs and
Transformers, in terms of the accuracy/cost trade-off. This includes 87.94% top-1 validation accuracy
on ILSVRC2012 “ImageNet” [13]. When pre-trained on data of more modest scale (i.e., ⇠1–
10M images), coupled with modern regularization techniques [49, 54], Mixer also achieves strong
performance. However, similar to ViT, it falls slightly short of specialized CNN architectures.

2 Mixer Architecture

Modern deep vision architectures consist of layers that mix features (i) at a given spatial location,
(ii) between different spatial locations, or both at once. In CNNs, (ii) is implemented with N ⇥N

convolutions (for N > 1) and pooling. Neurons in deeper layers have a larger receptive field [1, 28].
At the same time, 1⇥1 convolutions also perform (i), and larger kernels perform both (i) and (ii).
In Vision Transformers and other attention-based architectures, self-attention layers allow both (i)
and (ii) and the MLP-blocks perform (i). The idea behind the Mixer architecture is to clearly separate
the per-location (channel-mixing) operations (i) and cross-location (token-mixing) operations (ii).
Both operations are implemented with MLPs. Figure 1 summarizes the architecture.

Mixer takes as input a sequence of S non-overlapping image patches, each one projected to a desired
hidden dimension C. This results in a two-dimensional real-valued input table, X 2 RS⇥C . If the
original input image has resolution (H,W ), and each patch has resolution (P, P ), then the number of
patches is S = HW/P

2. All patches are linearly projected with the same projection matrix. Mixer
consists of multiple layers of identical size, and each layer consists of two MLP blocks. The first one
is the token-mixing MLP: it acts on columns of X (i.e. it is applied to a transposed input table X>),
maps RS 7! RS , and is shared across all columns. The second one is the channel-mixing MLP: it
acts on rows of X, maps RC 7! RC , and is shared across all rows. Each MLP block contains two

2

feature 
particles 

features 

MLP 1 :  operate on features  
MLP 2:   operate on particles 

pa
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ic
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THE PERFORMANCE FOR TOP VS QCD CLASSIFICATION

generated at a center-of-mass energy of
→

s = 14 TeV using Pythia8 [67], with fast detector
simulation by Delphes [68]. The simulation does not incorporate e!ects from multiple parton
interactions or pileup. Jet clustering is carried out using the Anti-kT algorithm with a radius
parameter of R = 0.8, based on Delphes E-Flow objects. The dataset includes jets with
transverse momentum in the range pT ↑ [550, 650] GeV and pseudo-rapidity constrained to
|ω| < 2. For top quark events, a valid jet must be located within !R = 0.8 of a hadronically
decaying top quark, with all three decay products of the top also confined within !R = 0.8
from the jet axis. The primary background process considered is QCD dijet production.
This dataset consists of one million tt̄ events and an equal number of QCD dijet events.
Following the standard data split, we allocate 1.2 million events for training, 400,000 for
validation, and 400,000 for testing. The dataset is widely used in previous studies, allowing
for direct performance comparisons of existing models. 2

Table 1: Performance of di!erent networks for top jet classification. Results for networks
without an asterisk are taken from their respective references. Plain Transformer was
trained from scratch using the structure described in Appendix A.

Accuracy AUC 1/εB(εs = 0.5) 1/εB(εs = 0.3) Parameters

ParticleNet[54] 0.940 0.9858 397 ± 7 1615 ± 93 370K
PFN[53] ↓ 0.9819 247 ± 3 888 ± 17 86.1K
rPCN[69] ↓ 0.984 364 ± 9 1642 ± 93 ↓

Lorentz invariance based networks
PELICAN[35] 0.9426 0.987 ↓ 2250 ± 75 208K
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ParT[49] 0.940 0.9858 413 ± 6 1602 ± 81 2.14M
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Plain Transformer→ 0.927 0.979 362 ± 7 780 ± 73 1.7M
IAFormer→ 0.942 0.987 510± 6 2012± 30 211K

Table 1 presents the classification performance of IAFormer for top jet classification.
IAFormer is trained for 23 epochs, with a batch size of 256, with early stopping set for
5 epochs. The AdamW optimizer [73] with an initial learning rate of 5 ↔ 10↑4 and the
Cosine annealing scheduler is used to adjust the learning rate during the training. Two
input datasets are considered, particle kinematics, with dimensions X = (100, 11), with a
maximum of one hundred particles and 11 features per particle. A second dataset of the
pairwise interaction I, which encodes 6 features for each particle pair and total dimension
(100, 100, 6). Other networks are trained with the same hyperparameter setup, but trained
for 20 epochs. After training, the network performance is evaluated using various met-
rics, including classification accuracy, Area Under the ROC Curve (AUC), and background
rejection at signal e"ciencies of 0.3 and 0.5.
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(100, 100, 6). Other networks are trained with the same hyperparameter setup, but trained
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 3. IAFormer (=InterAction transFormer) 

RMSNorm enhances network convergence. For the pairwise interaction dataset, three two-
dimensional convolution layers are employed with 256, 128, and 32 filters. The filter size
is 1 such that the mapped features are not diluted by the convolution operation. Each
convolution layer is followed by GELU activation and RMSNorm layers. The dimension of
the embedded kinematic dataset is (100, 32) while the embedded particle interaction dataset
has the dimension (100, 100, 32).

The attention based layer has a distinct structure, processing two input datasets and
outputting both datasets scaled by the computed attention. For each dataset, an RMSNorm
layer is applied to normalize the input features. The trainable matrices, W1 and W2,
are initialized using a fully connected layer for the particle kinematics dataset and a 2D
convolutional layer for the pairwise interaction dataset. Both datasets are scaled using skip
connections. For the particle kinematics dataset Xi, an MLP is added after the attention
heads. This MLP consists of an RMSNorm layer followed by a fully connected layer with
Sigmoid-Weighted Linear Units (SiLU) activation [64]. The MLP size is set to four times
the number of embedded features. For the top tagging and quark-gluon tagging tasks,
we use 12 attention layers, each containing 16 attention heads. The output of the final
attention layer undergoes an average pooling before the final MLP. The final MLP layer
consists of a fully connected layer with 100 neurons and an output layer with one neuron
and a sigmoid activation function.

3 Performance of IAFormer

In this section, we validate IAFormer against existing networks for Top tagging and quark-
gluon classification. The validation is performed using publicly available datasets, the Top
[65] and the quark-gluon dataset [66]. Results for existing networks are taken from their
respective references. Additionally, we compare IAFormer performance with two baseline
networks, a Plain Transformer and a Transformer with an interaction matrix, both trained
from scratch, as described in Appendix A.

3.1 Input variables and data structure

In this analysis, we consider two input datasets, one with the particle momentum features
and another one of particle pair interaction features. For the top tagging, up to 200 con-
stituent particles (hadrons) are retained for each jet, with the 4-momenta (px, py, pz, E) of
each particle. From this dataset, we construct the first input dataset with up to 100 pT

ordered jet constituents with eleven features for each particle as:

- P4 = (px, py, pz, E) : particle 4-momentum
- !ω = ω → ωjet : pseudorapidity di!erence
- !ε = ε → εjet : azimuthal angle di!erence

- !R =
√

(!ω)2 + (!ε)2 : angular distance from jet axis
- log(pT ) : transverse momentum (GeV)
- log(E) : energy (GeV)

- log
(

pT

pTjet

)

: normalized pT (GeV)

- log
(

E

Ejet

)

: normalized energy (GeV)

(10)

9

original input for attention α = softmax(QKT)

particle information 

IAFormer attention α = softmax(ℐij)

Additionally, the quark-gluon dataset includes particle ID information, providing six
extra features: the charge of each final-state particle and five binary indicators specifying
whether a particle is an electron, muon, photon, charged hadron, or neutral hadron. The
particle ID is represented using one-hot encoding, where a value of 1 corresponds to the
given particle and 0 to all others.

For the pairwise particle interactions, we consider six common features for the top and
quark gluon tagging [10]

- (pTa + pTb)/pTj : sum of pair transverse momenta normalized by jet pT

- (Ea + Eb)/Ej : sum of pair energies normalized by jet energy

- ! =
√

(ωa → ωb)2 + (εa → εb)2 : angular distance between particles
- kT = min(pTa , pTb) · ! : transverse momentum scale
- z = min(pTa , pTb)/pTa + pTb : momentum sharing fraction
- m

2 = (Ea + Eb)2
→ |pa + pb|

2 : invariant mass squared of the pair
(11)

Similar to [49], we consider the logarithm of the pairwise interaction variables. Integrating
the energy and momentum variables in the interaction matrix is crucial as IAFormer uses
the interaction matrix only for the attention score. The first two variables identify the most
energetic particle pairs that most likely form the prongs of the Top jet.

The plain Transformer network uses only the particle kinematic dataset with the di-
mension (100, 11), with the first and second numbers referring to the maximum number of
jet constituents and the features, respectively. IAFormer uses two input datasets, particle
kinematics and pairwise interaction matrix of the dimension of (100, 100, 6).

3.2 Top tagging

The identification of jets originating from hadronically decaying top quarks, known as top
tagging, plays a vital role in LHC new physics searches. To evaluate the performance of
our proposed network, we employ the top tagging dataset. This dataset consists of jets
generated at a center-of-mass energy of

↑
s = 14 TeV using Pythia8 [67], with fast detector

simulation by Delphes [68]. The simulation does not incorporate e!ects from multiple
parton interactions or pileup. Jet clustering is carried out using the Anti-kt algorithm with
a cone radius of R = 0.8, based on Delphes E-Flow objects. The dataset includes jets with
transverse momentum in the range pT ↓ [550, 650] GeV and pseudo-rapidity constrained to
|ω| < 2. For top quark events, a valid jet must be located within !R = 0.8 of a hadronically
decaying top quark, with all three decay products of the top also confined within !R = 0.8
from the jet axis. The primary background process considered is QCD dijet production.
This dataset consists of one million tt̄ events and an equal number of QCD dijet events.
Following the standard data split, we allocate 1.2 million events for training, 400,000 for
validation, and 400,000 for testing. The dataset is widely used in previous studies, allowing
for direct performance comparisons of existing models. 2

Table 1 presents the classification performance of IAFormer for top jet classification.
IAFormer is trained for 23 epochs, with a batch size of 256 with early stopping set for
5 epochs. The AdamW optimizer [73] with an initial learning rate of 5 ↔ 10→4 and the
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 pairwize and boost invariant quantity 

ℐij = W ⋅ Iij
Iij

3-1. Improvement of attention matrix. Esmail, Hammad, Nojiri 2025.03258



•  →  α = softmax(ℐ) α(i) = softmax(ℐ(i)
1 ) − β(i)softmax(ℐ(i)

2 )

cancel the irrelevant information 

ℐ(1), β(1) ℐ(3), β(3)ℐ(2), β(2)

Each layer built different 
filters  dynamically 

3-2 Introduction of Differential attention  

• We have introduced a new dynamic attention called “differential attention” 
to the network. (see arXiv:2410.05258 )

fixed sparse attention 



While this approach reduces network complexity and improves performance, it has a
key limitation. Since the interaction matrix is independently added to each Transformer
layer. This leads to the mismatch in feature representations between the pairwise interaction
matrix and the input Xi,j . As the attention mechanism assigns weights to all particle tokens
in the dataset, this misalignment can lead to assigning attention to irrelevant particles, such
as soft hadrons.

2.3 IAFormer

IAFormer is a transformer-based architecture, but significant modifications have been made
compared to the ParT setup, as illustrated in Figure 2.3.2. Instead of computing the
attention score through the multiplication of the Query and Key matrices, IAFormer applies
the softmax function directly to a trainable interaction matrix of the form WI. This
interaction matrix is independently optimized for each attention head within the individual
attention layers, enabling the network to dynamically learn discriminative patterns among
di!erent jets with e!ectively reduced size.
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Figure 1: Schematic architecture of IAFormer network.

Additionally, a dynamic sparse attention pattern is included following the idea of “di!er-
ential attention” [51]. The di!erential attention utilises the attention scores as the di!erence
between two separate softmax attention maps. The subtraction cancels noise, promoting
the sparse attention patterns dynamically. The model has a trainable parameter ω to con-
trol the level of the subtraction. The parameter is initialized randomly and shared across
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THE PERFORMANCE FOR TOP VS QCD CLASSIFICATION

generated at a center-of-mass energy of
→

s = 14 TeV using Pythia8 [67], with fast detector
simulation by Delphes [68]. The simulation does not incorporate e!ects from multiple parton
interactions or pileup. Jet clustering is carried out using the Anti-kT algorithm with a radius
parameter of R = 0.8, based on Delphes E-Flow objects. The dataset includes jets with
transverse momentum in the range pT ↑ [550, 650] GeV and pseudo-rapidity constrained to
|ω| < 2. For top quark events, a valid jet must be located within !R = 0.8 of a hadronically
decaying top quark, with all three decay products of the top also confined within !R = 0.8
from the jet axis. The primary background process considered is QCD dijet production.
This dataset consists of one million tt̄ events and an equal number of QCD dijet events.
Following the standard data split, we allocate 1.2 million events for training, 400,000 for
validation, and 400,000 for testing. The dataset is widely used in previous studies, allowing
for direct performance comparisons of existing models. 2

Table 1: Performance of di!erent networks for top jet classification. Results for networks
without an asterisk are taken from their respective references. Plain Transformer was
trained from scratch using the structure described in Appendix A.

Accuracy AUC 1/εB(εs = 0.5) 1/εB(εs = 0.3) Parameters

ParticleNet[54] 0.940 0.9858 397 ± 7 1615 ± 93 370K
PFN[53] ↓ 0.9819 247 ± 3 888 ± 17 86.1K
rPCN[69] ↓ 0.984 364 ± 9 1642 ± 93 ↓

Lorentz invariance based networks
PELICAN[35] 0.9426 0.987 ↓ 2250 ± 75 208K
LorentzNet[70] 0.942 0.9868 498 ± 18 2195 ± 173 224K
L-GATr[71] 0.942 0.9870 540 ± 20 2240 ± 70 –

Attention based networks
ParT[49] 0.940 0.9858 413 ± 6 1602 ± 81 2.14M
MIParT[50] 0.942 0.9868 505 ± 8 2010 ± 97 720.9K
Mixer[21] 0.940 0.9859 416 ± 5 – 86.03K
OmniLearn[72] 0.942 0.9872 568 ± 9 2647 ± 192 1.6M
Plain Transformer→ 0.927 0.979 362 ± 7 780 ± 73 1.7M
IAFormer→ 0.942 0.987 510± 6 2012± 30 211K

Table 1 presents the classification performance of IAFormer for top jet classification.
IAFormer is trained for 23 epochs, with a batch size of 256, with early stopping set for
5 epochs. The AdamW optimizer [73] with an initial learning rate of 5 ↔ 10↑4 and the
Cosine annealing scheduler is used to adjust the learning rate during the training. Two
input datasets are considered, particle kinematics, with dimensions X = (100, 11), with a
maximum of one hundred particles and 11 features per particle. A second dataset of the
pairwise interaction I, which encodes 6 features for each particle pair and total dimension
(100, 100, 6). Other networks are trained with the same hyperparameter setup, but trained
for 20 epochs. After training, the network performance is evaluated using various met-
rics, including classification accuracy, Area Under the ROC Curve (AUC), and background
rejection at signal e"ciencies of 0.3 and 0.5.

2
It should be noted that there is an e!ective class imbalance near the top quark mass. The tt̄ sample

exhibits a pronounced peak around 170 GeV, whereas the mass of the QCD jets is concentrated near zero,

resulting in a tiny overlap between their distributions. This disparity makes it particularly challenging to

discern fine-grained di!erences among high-performance neural networks. Therefore, we use several measures

to compare the network performance.
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3-4 RESULTS: BEHAVIOR OF DYNAMIC FILTERS 

IAFormer outperforms other attention-based Transformer networks, although it has an
order of magnitude smaller parameter size of 211K than ParT. This reduction in network size
is achieved by replacing the Q and K matrices with an interaction matrix, where attention
scores are primarily based on pairwise particle interactions. Furthermore, the use of sparse
attention enables the network to suppress attention scores of less relevant tokens, reducing
the need for excessive model complexity, while e!ciently distinguishing between top and
QCD jets. This is reflected in the network training uncertainty, which IAFormer is very
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Figure 2: The left plot shows the ω distribution across the twelve IAFormer layers for
di"erent seed numbers on the test dataset. The right plot illustrates the uncertainty in
the network output when trained with di"erent seed numbers, 42, 0, 7, 123, and 12345.
The results of the architectures of the Transformer +Iij(similar to ParT) and the plain
Transformer are shown. The uncertainty is reported in terms of background rejection at
0.3 signal e!ciency.

robust against numerical fluctuation. The right plot of figure 2 illustrates the fluctuation
of the background rejection at 0.3 signal e!ciency with the di"erent seeds for the network
parameter initialization. Furthermore, IAFormer exhibits robustness against the change of
the seed number with a fluctuation range of 150 while plain Transformer has a fluctuation
range of 600, and Transformer with interaction matrix(ParT) has a fluctuation range of
550.

The core component of the dynamic sparse attention is the inclusion of the learnable
parameter ω, which regulates the level of suppression of less relevant tokens. The left plot in
Figure 2 illustrates the distribution of ω across all IAFormer layers. To better understand
the role of ω, we analyze three di"erent random seeds. Interestingly, all distributions exhibit
a similar pattern: ω values increase in the initial layers, reach a maximum value, and then
decrease in the later layers. Network classification accuracy improves for higher ω; the blue
line corresponds to the best classification accuracy of AUC=0.98678, with ω value very close
to 0.6. It also starts at a lower value for earlier layers. This shows that the earlier layer tries
to build collective quantities stable against fluctuations, and the rest of the information is
abandoned in the later layers dynamically for successful training.

3.3 Quark gluon tagging

The quark jet and gluon jet are expected to show distinguishable features due to di"erent
fragmentation patterns arising from the color di"erence. The quark-gluon tagging is phe-
nomenologically important because BSM particles tend to emit high-energy quarks rather
than gluons. The public dataset [66] is generated using Pythia8 [67], where quark(gluon)
jets originate from Z

0 boson plus quark(gluon) process. The dataset contains not only
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3-4 RESULT  :Learning pattern analysis  CKA similarity 

CKA values range from 0 to 1, where higher values indicate strong similarity between
learned representations. If two consecutive layers have high CKA similarity, it suggests
that the second layer does not significantly enhance classification accuracy, implying that it
could be removed without a!ecting performance. On the other hand, layers with low CKA
similarity capture distinct aspects of the data, contributing to improved model performance
by learning complementary features.
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Figure 5: Linear CKA similarity for IAFormer (left), Transformer +Ii,j (middle), and Plain
Transformer (right) using 1000 test events from the top jet dataset. The axes represent the
attention layers in each network, while the colour bar indicates the CKA values.

We compute the output from each attention layer with dimensions (100, 32), where the
first dimension corresponds to the number of particles and the second represents feature
embeddings. To construct the Gram matrices, M and N , we consider 1000 test events and
average over the feature dimension, resulting in Gram matrices of size (1000, 1000). These
matrices are then used to compute the CKA values for three di!erent networks, IAFormer,
Transformer with an interaction matrix( similar to ParT), and Plain Transformer, as shown
in Figure 5. For a fair comparison, all networks are trained with 12 attention layers,
represented on the X and Y axes of each plot.

Attention layers of IAFormer exhibit lower CKA values, particularly in the first four
layers, with CKA values ranging from 0.5 to 0.8. This suggests that these layers capture
di!erent patterns in the jet constituents, contributing to an overall improvement in classifi-
cation performance. The later layers exhibit stronger internal similarity, with CKA values
exceeding 0.8. The CKA structure indicates an e"cient flow of attention from the early
layers to the final ones. The middle plot presents the CKA values for the Transformer
incorporating the interaction matrix. The CKA matrix exhibits a block-diagonal structure,
where the first four layers demonstrate strong internal similarity but di!er significantly from
the remaining layers. Additionally, the last four layers encode nearly identical information,
with a CKA value of 1. In contrast, Plain Transformer shows consistently high similarity
across all layers, with CKA values ranging from 0.85 to 1. This uniformity likely contributes
to its lower performance in the top tagging task compared to other networks.

Overall, Plain Transformer and Transformer+ Iij stop improving the first 6 layers, while
IAFormer steadily improves for all layers, with stronger suppression of the fluctuation by
larger ω layer by layer, likely building global variables along the increasing layers.
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ParT ϵb(50%) = 413IAFormer( )  ϵb(50%) = 510
Plain Transformer 
ϵb(50%) = 360

gave up ↦gave up ↦

11

TABLE I. performance of the Mixer network for top quark tagging compared with other models. Results for EDI-net [44], Point
Cloud Transformer (PCT) [45], Lorentz Net [28], PELICAN [46], PFN [36], ParticleNET [37], and ParT [38] are quoted from
their published results. Pretrained ParticleNET and ParT have higher performance with AUC = 0.9866 and AUC= 0.9877,
respectively. The pertaining is done on the JETCLASS dataset, followed by the tuning to the top dataset. Transformer(subjet)
model is trained from scratch using the CA subjets dataset only. Training time is per epoch with a batch size of 1024. The
GPU training time is measured on an NVIDIA RTX A6000 card.

AUC Rej50% Parameters Time (GPU) [s]

JEDI-net with
P

O 0.9807 � 87.7K �

PFN 0.9819 247±3 86.1K 30

PCT 0.9855 392± 7 193.3K �

LorentzNet 0.9868 498± 18 224K �

ParticleNET 0.9858 397± 7 370K �

PELICAN 0.9869 � 45K �

ParT 0.9858 413± 16 2.14M 612

Transformer(subjets) 0.9640 186± 11 398K 129

Mixer(Anti-kt) 0.9854 375± 5 86.03K 33

Mixer(CA) 0.9856 392± 6 86.03K 33

Mixer(HDBSCAN) 0.9859 416± 5 86.03K 33

shortest training time but lacks learning of the local in-
formation shared between particles and their neighbours,
leading to relatively poor performance.

VI. INTERPRETABLE ML TECHNIQUES

ML models’ interpretability can be challenging due to
their intricate hidden layers. Understanding the model’s
architecture and learned representations is crucial for ac-
curate predictions.

Various interpretable ML methods have been devel-
oped to provide insights into how models make predic-
tions. This helps to validate model decisions. In this
section, we employ two methods that o↵ers a straight-
forward interpretation of the network outcomes, namely,
Central Kernel Alignment (CKA) and attention map vi-
sualization. CKA is a metric used to compare the sim-
ilarity between two sets of learned representations in a
high-dimensional feature space. It was first introduced
in [63] and used in collider analysis in [64].

It measures the representations learned by the net-
work layers or hidden layers of di↵erent models, consider-
ing local similarities and global structure. On the other
hand, attention maps are visual representations gener-
ated by attention mechanisms in neural networks, high-
lighting the input data most relevant for making pre-
dictions. They provide insights into the focuses of the
model during processing, aiding in the interpretation of
the decision-making process.

In the following, we apply those interpretable meth-
ods to the Mixer network trained on t a jet constituents
dataset with dimensions (100, 7) and a subjets informa-
tion with dimensions (15, 7) clustered using the CA al-
gorithm with R = 0.3. Importantly, these interpretable

methods are agnostic to the specific network configura-
tion and can be applied to other results presented in this
paper.

A. CKA similarity

CKA similarity, rooted in the principles of kernel meth-
ods and alignment-based metrics, o↵ers a comprehensive
framework for assessing the similarity between two sets
of representations learned by di↵erent models or layers
within a model. It measures the alignment between rep-
resentations in a high-dimensional feature space rather
than simply comparing their values. Unlike linear simi-
larity measures such as Pearson correlation or Euclidean
distance,

CKA captures complex relationships between repre-
sentations learned by di↵erent models or layers, making it
suitable for comparing high-dimensional and non-linearly
transformed data. The primary obstacle in analyzing
the representations of hidden layers in neural networks is
the dispersion of features across neurons, with sizes often
larger than the input dimension and varying in layers or
models.

CKA facilitates quantitative comparisons of represen-
tations both within individual networks and across dif-
ferent models. This can be done by considering the acti-
vation matrices of two hidden layers X and Y evaluated
on the same input dataset; when the data size is d, and
P1 and P2 is the number of neurons of the two di↵erent
hidden layers, X 2 Rd⇥P1 and Y 2 Rd⇥P2 . The CKA
similarity is defined as

CKA(M,N) =
HSIC(M,N)p

HSIC(M,M)HSIC(N,N)
, (19)
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where M = XX
T and N = Y Y

T are two Gram matrices
of the two hidden layers with d⇥d dimension. The size of
the Gram matrices depends only on the number of inputs,
therefore, the CKA(M, N) can be used to compare any
layers with di↵erent numbers of neurons or networks of
di↵erent models.

The Hilbert-Schmidt Independent Criterion (HISC)
[65] between two matrices is defined as

HSIC(M,N) =
1

(d � 1)2
Tr(MHNH) , (20)

where a d⇥d centering matrix H is defined as Hij = �ij�

1/d, therefore
P

i AHij =
P

j aHij = 0 for A = M, N .
Centering the matrices ensures that the CKA similarity
is not overly influenced by outliers or extreme values in
the data, leading to more robust comparisons between
representations.

The value of the CKA ranges between [0, 1]. A higher
CKA value suggests that these layers have captured re-
dundant information from the input features. If two sub-
sequent layers are similar in the CKA, it indicates the
second layer leads to negligible improvement in classifi-
cation accuracy. In such instances, trimming these layers
can reduce model complexity without compromising clas-
sification performance. Conversely, the layers with lower
CKA values have captured distinct information from the
data, and enhanced the classification performance

FIG. 9. The CKA similarity of top jet events (top plot)
and QCD jet (bottom). Axes represent the network layers.
FC(MLP1) and FC(MLP2) are the fully connected layers in
the first and second MLP of mixer layers, respectively. The
last FC represents the last FC layer in the network, and At-
tention is the multi-heads cross-attention.

The CKA results are depicted in Fig. 9, showing the
top jet events in the upper plot and QCD jet events in the
lower plot. The analysis is based on a sample of 5000 test
events, with the subjets dataset clustered using the CA
algorithm with R = 0.3. CKA values are computed for
distinctive model layers, including the embedding layer,
the two FC layers for the first and second MLP mixer, the
multi-head cross-attention layer, and the final FC layer.

In general, layers with low correlations imply that they
capture independent information from each other, under-

scoring their significance in the network’s decision mak-
ing process, see for example figure 3 in [63].

The multi-head cross-attention layer shows lower simi-
larity with the two MLPs for the top jet with CKA value
30% and 57% for the QCD jets. The top jet CKA values
are lower than QCD ones, which suggests the network
layers are adept at capturing distinct information and
are capable of learning the substructure of the top jet.
The MLP mixer layers must have focused on the other
features of the model. The first and second MLP mix-
ers exhibit low similarity. Specifically, for top events, the
two MLPs demonstrate lower CKA values around 58%
compared to the QCD events with CKA value 76%, sug-
gesting that the network has learned a specific internal
structure unique to top events.

B. Attention maps

Attention maps visualize the attention scores assigned
to each particle token in the input sequence, providing a
representation of where the model focuses its attention
during the decision making process[66].

Also, it reveals the relation between particle tokens.
For instance, it highlights the information extracted

from the jet constituents relevant to the clustered subjets.
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FIG. 10. Cross-attention maps for 50000 test events of top
(top plot) and QCD (bottom plot) averaged over 15 atten-
tion heads. The X-axis shows the attention score for the first
transformed 30th jet contents, while the Y-axis shows the at-
tention score for the transformed subjets.

Fig. 10 presents the cross-attention maps for a sam-
ple of 50,000 test events, showing top jet events in the
upper plot and QCD jet events in the lower plot. As

H = δij −
1
d

d event-two layer output  and   → dxd matrix . Then X1(d × h1) Xx(d × h1) M = X1XT
1 , N = X2XT

2

if CKA~1, two layers are equivalent̶and not needed. 

IAFormer is  
learning efficiently 



SUMMARY: OUR MODEL: CROSS ATTENTION

Key Query Value update

Particle 
transformer particle particle particle particle 

“Mixer” subjet particle subjet particle

“Global 
analysis”  particle jet jet jet

“IAFormer” particle particleboost invariant pairwise 
quantity 



4. ML FOR GENERATOR COMPARISON

Gen 1 Particles High level variable 

Gen 2 Particles High level variable 

Transformer MLP(Analysis Model) 

Transformer: no human bias, poor training stablity  
Analysis Model (AP):MLP using highlevel input : stable prediction, ideal for generator comparison

w =
sgen(x)

1 − sgen(x)
: generator classifier  

output
sgen(x) estimated probability  

ratio 

What is this? 



Subjet  
Localized sampling   

 momentum and counting  
for various angular sccale 

R=0.1, 0.2, 0.3  

Jet spectrum  
two point Energy 
correlation  

(unlocalized sampling ) 
= EFP with N=2 

Minkowski Functionals 
geometry of jet cosntituent  

distribution 

pt distribution of constituents  

     HL feature for generator classification 

3.3.2 two-point correlation spectrum S2

Top jets often have two or three substructures as they decay into a bottom quark and
two light quarks. Therefore, structure in two-point and three-point energy correlation is
essential to discriminate top jets from QCD jets. We use IRC safe two-point correlation
spectrum, which is defined as follows[9, 20, 32, 33],

S2,ab(R)
def
=

X

i2a

X

j2b
pT,ipT,j�(R�Rij). (3.6)

Here, a and b are labels for subsets of jet constituents, i and j are labels for their constituents
and Rij

def
=

p
(⌘i � ⌘j)2 + (�i � �j)

2. Notably, all EFPn
2 information is included in S2,ab.

The structure indexes a, b 2 {Jtrim,Jc
trim

def
= J � Jtrim} or a, b 2 {Jlead,Jc

lead

def
=

J � Jlead} and we call corresponding S2 inputs as xtrim and xlead. These are collectively
referred to as xS2 . The S2 is binned by �R = 0.1. S2s are compressed compared with
sparse jet images. The correlation involving Jc

trim
and Jc

lead
is formally IRC safe, but it

emphasizes the effect of soft particle distributions.
The module of the networks that further compresses the S2 information is a simple

MLP with two hidden layers. The inputs are combined with xkin as shown in Fig.3a. Two
sets of outputs of dimension five each goes into the final convolution layers ;

ztrim = �
trim

(xtrim, xkin)

zlead = �
lead

(xlead, xkin).

See [9] for the detailed setup of the network.

(a) A schematic diagram of S2 module (b) A schematic diagram of subjet recursive

module

Figure 3

3.3.3 subjet recursive module "subj"

If the moment of the subjet is added as an input, information about the exact location of
the subcluster can be included. The k-th subjet information xsubj,k includes the transverse
momentum of the subjet of radius Ri where Ri is the cone size of the subjet, R = 0.1, 0.2,
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PYTHIA VS HERWIG UNDER ML

Figure 6: (change fig) Histogram ratios before and after reweighting for HW ! PY. The left panel
shows QCD events and the right panel shows top events. Dashed lines represent unnor-
malized ratios r̂II, and solid lines represent normalized ratios rII. ParT(AM) reweighting
is shown in blue(orange) lines

QCD s
I
< 0.05 0.5 < s

I
< 0.7

ParT 0.010 (0.033) �0.016 (0.006)
AM �0.007 (�0.007) 0.003 (0.004)

top s
I
> 0.95 0.3 < s

I
< 0.5

ParT �0.009 (0.028) 0.003 (0.041)
AM �0.019 (�0.016) 0.016 (0.015)

Table 5: The r
II � 1 (r̂II � 1) is given s

I region for QCD (left) and top (right) samples. For the
case of ParT, a large deviation from 0 is observed for reweighting without normalization.

find visible differences between ParT and AM, which will be discussed in section ...

4.3 Impact of AM Feature Selection on Reweighting Accuracy for QCD and

Top Events

Next, we demonstrate the effect of removing several AM inputs on the refined score dis-
tribution. The HLFs of the AM have been selected based on physics considerations[19].
S2[32, 37] and subjet information are inspired by traditional IRC safe observable, while
MFs[9, 38] are extensions of counting variables. This subsection focuses on how each HLF
contributes to the reweighting accuracy of top and QCD samples. We remove some of the
inputs from AM modules and compare the reweighting accuracy to quantify the individual
contributions of the HLF. Those reduced AM are called AM-PIPs (Partial inputs).

For this analysis, we use the following three models as AM-PIPs: MF(low), MF(high)
and S2 + subj. The models MF(low) and MF(high) use a subset of high-level features
(HLFs); namely, instead of using xcount + xMF, they employ the following sets of features
without utilizing S2 or subject information:

MF(low) : xcount, xMF with pT,i > 0.5, 1, 2 GeV, (4.4)
MF(high) : xcount, xMF with pT,i > 4, 8 GeV. (4.5)

Here, MF(low) focuses on features involving low pT jet constituents, while MF(high) ex-
cludes constituents with pT < 4 GeV. The sum of MF(high) and MF(low) information
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: generator classifier  

output
sgen(x) estimated probability  

ratio 
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3.3.2 two-point correlation spectrum S2

Top jets often have two or three substructures as they decay into a bottom quark and
two light quarks. Therefore, structure in two-point and three-point energy correlation is
essential to discriminate top jets from QCD jets. We use IRC safe two-point correlation
spectrum, which is defined as follows[9, 20, 32, 33],

S2,ab(R)
def
=

X

i2a

X

j2b
pT,ipT,j�(R�Rij). (3.6)

Here, a and b are labels for subsets of jet constituents, i and j are labels for their constituents
and Rij

def
=

p
(⌘i � ⌘j)2 + (�i � �j)

2. Notably, all EFPn
2 information is included in S2,ab.

The structure indexes a, b 2 {Jtrim,Jc
trim

def
= J � Jtrim} or a, b 2 {Jlead,Jc

lead

def
=

J � Jlead} and we call corresponding S2 inputs as xtrim and xlead. These are collectively
referred to as xS2 . The S2 is binned by �R = 0.1. S2s are compressed compared with
sparse jet images. The correlation involving Jc

trim
and Jc

lead
is formally IRC safe, but it

emphasizes the effect of soft particle distributions.
The module of the networks that further compresses the S2 information is a simple

MLP with two hidden layers. The inputs are combined with xkin as shown in Fig.3a. Two
sets of outputs of dimension five each goes into the final convolution layers ;

ztrim = �
trim

(xtrim, xkin)

zlead = �
lead

(xlead, xkin).

See [9] for the detailed setup of the network.

(a) A schematic diagram of S2 module (b) A schematic diagram of subjet recursive

module

Figure 3

3.3.3 subjet recursive module "subj"

If the moment of the subjet is added as an input, information about the exact location of
the subcluster can be included. The k-th subjet information xsubj,k includes the transverse
momentum of the subjet of radius Ri where Ri is the cone size of the subjet, R = 0.1, 0.2,
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III. APPLICATION TO TOP-TAGGING

A. Data set

We study the performance of the DisCo-Feature Selec-
tion algorithms on the top quark tagging landscape data
set [1, 54]. This data set contains boosted, hadronically-
decaying top jets as signal, and QCD (i.e. light quark
and gluon) jets as background, which are generated us-
ing Pythia8 [55], with a center-of-mass energy of 14 TeV.
Multiple interactions and pile-up are not included in this
data set. The detector simulation is done using Delphes
[56], with the ATLAS detector card. FastJet [57] is
used to create jets using the anti-kT algorithm [58] with
R = 0.8. Only jets in the pT range [500, 650] GeV, and
|⌘j | < 2, are considered. The data set contains only
kinematic information, in the form of energy-momentum
four-vectors of all the reconstructed particles in each jet,
which are extracted using the Delphes energy-flow algo-
rithm. No additional tracking information or particle
information is included.

The full data set contains 2 million events, with 1 mil-
lion signal events and 1 million background events. This
data is split into 1.2M events in the training set, 400k in
the validation set, and 400k in the test set, each set con-
taining equal number of signal and background events.

B. Feature Space

For top-tagging we start with

Finitial = F3 = {mJ , pT , mW�candidate} (4)

where mJ is the mass of the jet, pT is the transverse
momentum of the jet and mW�candidate is the mass of
the W -candidate in the jet, calculated with a very sim-
ple method: we recluster each fat jet using the exclusive
kT algorithm with R = 0.3 into exactly three subjets.
Then we pick the pair of subjets whose invariant mass
comes closest to mW . This pair of subjets gives us the
W -candidate and their mass is mW�candidate. The dis-
tributions of the initial features are illustrated in Fig. 3.

We then apply feature selection algorithms to a large
set of Energy Flow Polynomials (EFPs)[31]. EFPs are
functions of energy fractions and angular separation of
jet constituents:

z()a =

0

@ pT aP
i2J

pT i

1

A


, ✓(�)ab = (�⌘2
ab + ��2

ab)
�/2, (5)

where pT a is the transverse momentum of the ath jet
constituent, and the denominator in za is summed over
all jet constituents in a jet J . EFPs have a one-to-one
correspondence with a graph G:

X

a2J

z()a ! (each node), ✓(�)ab ! (each edge) (6)

Thus given a graph G, with N nodes and edges (m, `) 2
G, the EFP is:

EFP(,�)
G =

X

i12J

· · ·
X

iN2J

z()i1
· · · z()iN

Y

(m,`)2G

✓(�)imi`
. (7)

The original EFPs [31] were introduced as IRC-safe
observables, with  = 1. However in our feature space
we are motivated by [30] to consider other values of 
as well. Following [30],2 we use Energy Flow Polynomi-
als with all combinations of d  7, � = [0.5, 1, 2] and
 = [�1, 0, 0.5, 1, 2], which form a space of 7,320 unique
features.

C. Results

1. Ab initio feature selection using truth labels

First, we consider the ab initio feature selection task,
using the truth labels to guide the algorithms so as to
yield the best-possible classifier.

We apply the truth-guided DisCo-FFS and DO-ADO-
FFS3 to the training and validation set, and use the test
set only for evaluating the performance. (Network archi-
tectures and hyperparameters used in this section are de-
scribed in Appendix B.) The performance metric choosen
for top-tagging is R30 (the QCD rejection factor at 30%
top-tagging e�ciency). It allows a better separation of
di↵erent methods as area under curve (AUC) saturates
and is more indicative of the performance at a potential
working point.

As shown in Fig. 4, the R30 value increases as more fea-
tures are added using the two feature selection methods.
This shows that both DisCo-FFS and DO-ADO-FFS are
selecting useful features. After 9 features the perfor-
mance of the features added using the DisCo method
saturates with R30 ⇡ 1250. We also see that our pro-
posed method outperforms DO-ADO-FFS and achieves
a higher R30 at each step.

Any worthwhile feature selection algorithm should do
better than randomly selecting features. To test this, we
randomly select each number of features 10 times, and
use the average and standard deviation of the R30 as our
“random baseline” shown in Fig. 4. Interestingly we see
that the randomly selecting EFPs can also give better
performance, as we add more and more features, but not
as good as the FFS methods.

2With one exception – we don’t include additional features from
d = 8 with c = 4, as [30] do in their analysis. These features
were initially omitted due to di�culties in their calculation. It was
later verified that their inclusion does not significantly alter the
performance of DisCo-FFS.

3We note that in [30], the DO with truth-labels was referred
to as TO (for “truth-ordering”) and it was pointed out that ADO
with truth-labels reduces to the usual AUC metric.
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FIG. 7. Performance vs. iteration for 5 trials of DisCo-FFS (performance is the mean R30 of 10 trainings). We see that the
feature selection is deterministic for the first six EFPs selected (superimposed), and there is a corresponding sharp rise in R30.
Then this is followed by 2 paths (marked path 1 and path 2) in the 7th and 8th iterations. After that, DisCo-FFS finds di↵erent
sets of features to achieve similar performance.

formance (matching that of ParticleNet-lite [14]) with
a selection of just a small number of EFPs (less than
10). We also show how it outperforms the DO-ADO-FFS
method of [30] (which we have attempted to replicate as
closely as possible), consistently achieving higher tagging
performance after each EFP that is selected.

The fact that our method falls short of the most state
of the art deep learning methods (ParT [19], PELI-
CAN [24], and LorentzNet [23]) is interesting. Either our
method is not fully optimal at selecting the features, or
the 7,000+ EFPs we used as the basis of our study do not
capture all the physics underlying top tagging. A possi-
ble follow-up study to further probe this question would
be to supplement the 7,000+ EFPs with additional jet
substructure variables, for instance the subjettiness vari-
ables of [59, 61], jet spectra and morphological features
of [62–64], or Boost Invariant Polynomials [65]. This
observation also raises the possibility that there might
be more meaningful jet substructure variables out there,
beyond those that are presently known, waiting to be
discovered. This is obviously an interesting avenue for
future research.

Beyond simple object tagging, DisCo-FFS might also
be able to shine for tasks — such as building supervised
classifiers for new physics discovery — where calibration
of the algorithm is di�cult and a small number of well-
understood features is preferable. While particle physics

is in an especially good position due to the presence of
well-motivated bases of features (such as the used EFPs)
such decompositions also exists for other domains, e.g.
in the forms of wavelets applied to images (e.g. building
on [66]).

In general, EFPs selected could make for a very
lightweight and performant top tagger. This could have
important applications to triggering [67]. For that, a fast
way to calculate EFPs on FPGAs would be required.
Such will be interesting to explore further.

It would also be potentially illuminating to study the
robustness of the selected EFPs under domain shift. For
example, recently ATLAS released an o�cial top tagging
dataset [68]. One could compare the EFPs selected by
DisCo-FFS on the di↵erent top tagging datasets, and see
how one set of EFPs performs on the other dataset. One
could also imagine training this method on a restricted
set of HLFs (EFPs or otherwise) that are deemed to
be “well-modeled” by simulations. This could help with
the calibration and robustness of taggers developed using
simulation and deployed on data.

Overall, we observe the start of a positive feedback loop
between deep learning method development and physics-
motivated feature discovery. Each one drives the other.
Early top taggers [69] started with jet substructure vari-
ables like N -subjettiness. Then it looked like deep learn-
ing was able to go way beyond HLFs and we would
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III. APPLICATION TO TOP-TAGGING

A. Data set

We study the performance of the DisCo-Feature Selec-
tion algorithms on the top quark tagging landscape data
set [1, 54]. This data set contains boosted, hadronically-
decaying top jets as signal, and QCD (i.e. light quark
and gluon) jets as background, which are generated us-
ing Pythia8 [55], with a center-of-mass energy of 14 TeV.
Multiple interactions and pile-up are not included in this
data set. The detector simulation is done using Delphes
[56], with the ATLAS detector card. FastJet [57] is
used to create jets using the anti-kT algorithm [58] with
R = 0.8. Only jets in the pT range [500, 650] GeV, and
|⌘j | < 2, are considered. The data set contains only
kinematic information, in the form of energy-momentum
four-vectors of all the reconstructed particles in each jet,
which are extracted using the Delphes energy-flow algo-
rithm. No additional tracking information or particle
information is included.

The full data set contains 2 million events, with 1 mil-
lion signal events and 1 million background events. This
data is split into 1.2M events in the training set, 400k in
the validation set, and 400k in the test set, each set con-
taining equal number of signal and background events.

B. Feature Space

For top-tagging we start with

Finitial = F3 = {mJ , pT , mW�candidate} (4)

where mJ is the mass of the jet, pT is the transverse
momentum of the jet and mW�candidate is the mass of
the W -candidate in the jet, calculated with a very sim-
ple method: we recluster each fat jet using the exclusive
kT algorithm with R = 0.3 into exactly three subjets.
Then we pick the pair of subjets whose invariant mass
comes closest to mW . This pair of subjets gives us the
W -candidate and their mass is mW�candidate. The dis-
tributions of the initial features are illustrated in Fig. 3.

We then apply feature selection algorithms to a large
set of Energy Flow Polynomials (EFPs)[31]. EFPs are
functions of energy fractions and angular separation of
jet constituents:

z()a =

0

@ pT aP
i2J

pT i

1

A


, ✓(�)ab = (�⌘2
ab + ��2

ab)
�/2, (5)

where pT a is the transverse momentum of the ath jet
constituent, and the denominator in za is summed over
all jet constituents in a jet J . EFPs have a one-to-one
correspondence with a graph G:

X

a2J

z()a ! (each node), ✓(�)ab ! (each edge) (6)

Thus given a graph G, with N nodes and edges (m, `) 2
G, the EFP is:

EFP(,�)
G =

X

i12J

· · ·
X

iN2J

z()i1
· · · z()iN

Y

(m,`)2G

✓(�)imi`
. (7)

The original EFPs [31] were introduced as IRC-safe
observables, with  = 1. However in our feature space
we are motivated by [30] to consider other values of 
as well. Following [30],2 we use Energy Flow Polynomi-
als with all combinations of d  7, � = [0.5, 1, 2] and
 = [�1, 0, 0.5, 1, 2], which form a space of 7,320 unique
features.

C. Results

1. Ab initio feature selection using truth labels

First, we consider the ab initio feature selection task,
using the truth labels to guide the algorithms so as to
yield the best-possible classifier.

We apply the truth-guided DisCo-FFS and DO-ADO-
FFS3 to the training and validation set, and use the test
set only for evaluating the performance. (Network archi-
tectures and hyperparameters used in this section are de-
scribed in Appendix B.) The performance metric choosen
for top-tagging is R30 (the QCD rejection factor at 30%
top-tagging e�ciency). It allows a better separation of
di↵erent methods as area under curve (AUC) saturates
and is more indicative of the performance at a potential
working point.

As shown in Fig. 4, the R30 value increases as more fea-
tures are added using the two feature selection methods.
This shows that both DisCo-FFS and DO-ADO-FFS are
selecting useful features. After 9 features the perfor-
mance of the features added using the DisCo method
saturates with R30 ⇡ 1250. We also see that our pro-
posed method outperforms DO-ADO-FFS and achieves
a higher R30 at each step.

Any worthwhile feature selection algorithm should do
better than randomly selecting features. To test this, we
randomly select each number of features 10 times, and
use the average and standard deviation of the R30 as our
“random baseline” shown in Fig. 4. Interestingly we see
that the randomly selecting EFPs can also give better
performance, as we add more and more features, but not
as good as the FFS methods.

2With one exception – we don’t include additional features from
d = 8 with c = 4, as [30] do in their analysis. These features
were initially omitted due to di�culties in their calculation. It was
later verified that their inclusion does not significantly alter the
performance of DisCo-FFS.

3We note that in [30], the DO with truth-labels was referred
to as TO (for “truth-ordering”) and it was pointed out that ADO
with truth-labels reduces to the usual AUC metric.
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Figure 10: The standard deviation (std) of the event weight ω(w) (y-axis). The points with the
label H (L) correspond to the std values of the events in the H-region (L-region) of
corresponding FDn (the x-axis), respectively. The data of the same reweighting models
and the same H-region (L-region) are connected for readability, with the colour codes
and the line types being the same as Figure 8. Figure (a) is for QCD-like top jets
(s < 0.2), and (b) is for top-like QCD jets (s > 0.8).

large, given the average weight value → 1. Moreover, the values of ω(w
ParT

) in L- and
H-regions di!er by more than 0.1. The region with higher ω(w

ParT
) involves the region

with a large PY vs. HW probability ratio. Therefore, finding the correct reweighting factor
requires larger training samples. In Figure 10(b), the same plot for the top-like QCD events
(s > 0.8) is shown. The ω(w

ParT
) is typically → 0.2, and di!erences of the ω(w) values are

less pronounced; The values of AM and ParT are very close to each other. Moreover, ω(w)
values for L- and H-regions are the same except FD3.

The standard deviation ω(w
ParT

) tends to be large in the region where AM reweighting
performance is poor. To quantify this, we plot ω(wParT

) vs. !H(L)(FDn) in Figure 11. Here
accuracy metric !(FDn)H(L) is defined as follows,

!L(FDn) :=

(
NL(FDn|HW;w)

NL(FDn|PY)
↑ 1

)
2

, !H(FDn) :=

(
NH(FDn|HW;w)

NH(FDn|PY)
↑ 1

)
2

, (4.5)

where NL and NH represent the number of (reweighted) events in the L- and H-regions.
Figure 11(a) illustrates the relationship between ω(w

ParT
) and !(FDn) for QCD-like

top events. In regions with high ω(w
ParT

), namely, H-regions of FD1, FD2, and FD6, and L-
regions of FD3, FD4, and FD5, the AM values (marked by red "H" and "L") of !H(L)(FDn)

are the largest, namely the worst in accuracy. Conversely, in the left panel of Figure 11(a),
namely, the regions with lower ω(w

ParT
), AM has the best reweighting accuracy. Figure

11(b) show the ω(w
ParT

) and !(FDn) for top-like QCD jets, where ω(w
ParT

) does not
correlated with !

The relations observed in Figure 10(a), ω(wParT
) ↓ ω(w

AM
), and the right panel of

Figure 11(a), !AM
(FDn) ↓ !

ParT
(FDn) for large ω

ParT and !
AM

(FDn) ↔ !
ParT

(FDn)

for small ωParT, indicate the lack of appropriate HLFs representing the di!erence between
HT and PT samples in high ω(w

ParT
) region of FDn. The reduced reweighting accuracy of

AM can be attributed to the following factors:

– 25 –

10% diff after AM correction 

20%



TAKE AWAY MESSAGE
1. fast, lightweight, while keeping  performance 

2. Incorporate physics picture　　 

3. Jet analysis → event analysis.(H→hh)  

4. Respect symmetry   Replacing “attention from generic features” 
→“pairwise boost invariant  information “  (IAFormer)  

5. Reduce valiance in training 　 

6. Identify the key parameters for classifications

RESPCETING QCD

Cross attention is important  

Improved stability within DL  

Symmetry 

Identify Important variables in DL era   
Improving MC simulation


