Dark archaeology: cosmology through gravitational probes of dark objects

Djuna Lize Croon (IPPP Durham)

AEI meeting, September 2025

djuna.l.croon@durham.ac.uk | djunacroon.com

Probing dark matter substructure

Imagine...

Dark matter only interacts gravitationally 60

Probing dark matter substructure

Imagine...

- Dark matter only interacts gravitationally for
- It features sub-structure!

How do we look for it?

Gravitational lensing!

I call objects like these EDOs (extended dark objects)

What can we learn from it?

- Hints about the particle nature of DM!
- The early Universe curvature power spectrum!

Lensing equation:
$$\beta = \theta - \frac{4GM(\theta)}{\theta D_L c^2} \frac{D_{LS}}{D_S}$$

Magnification:
$$\mu = \frac{\theta}{\beta} \frac{d\theta}{d\beta} = \sum_{i} \mu_{i}$$

Lensing equation:
$$\beta = \theta - \frac{4GM(\theta)}{\theta D_L c^2} \frac{D_{LS}}{D_S}$$

Magnification:
$$\mu = \frac{\theta}{\beta} \frac{d\theta}{d\beta} = \sum_{i} \mu_{i}$$

$$\beta = 0 \rightarrow \theta \equiv \theta_E = \sqrt{\frac{4GM}{c^2} \frac{D_{\rm LS}}{D_{\rm L}D_{\rm S}}}$$

Einstein radius $r_E = \theta_E D_{\rm L}$

Near perfect Einstein Ring with the HST

Lensing equation:
$$u = \tau - \frac{m(\tau)}{\tau}$$

• $u \equiv \beta/\theta_E$

• $t \equiv \theta/\theta_E$

Geometry

"Thin screen approximation"

$$m(\tau) = \frac{\int_0^{\tau} d\sigma \sigma \int_0^{\infty} d\lambda \, \rho(r_E \sqrt{\sigma^2 + \lambda^2})}{\int_0^{\infty} d\gamma \gamma^2 \rho(r_E \gamma)}$$

Projected lens mass distribution Point-like lenses: $m(\tau)=1$

Lensing equation: $u = \tau - \frac{m(\tau)}{\tau}$

Magnification:
$$\mu = \left[1 - \frac{m(\tau)}{\tau^2}\right]^{-1} \left[1 + \frac{m(\tau)}{\tau^2} - \frac{1}{\tau} \frac{dm(\tau)}{d\tau}\right]^{-1}$$

Caustic crossing

Example light curve

with
$$\tau_m \equiv \theta_{\rm lens}/\theta_E = r_{\rm lens}/r_E$$

Boson star with $\tau_m = 1$ PBH (or $\tau_m = 0$)

Point-like lens:
$$m(\tau) = 1 \rightarrow \mu = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$

Caustic crossing

Example light curve

with
$$\tau_m \equiv \theta_{\rm lens}/\theta_E = r_{\rm lens}/r_E$$

Boson star with $\tau_m = 1$ PBH (or $\tau_m = 0$)

Point-like lens:
$$m(\tau) = 1 \rightarrow \mu = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$

Light curves with caustics

Can we look for these explicitly?

Light curves with caustics

Can we look for these explicitly? Yes!

Dedicated microlensing surveys
Histogram-based gradient boosted classifier

LSST: more stars, irregular cadence Anomaly detection for early identification

Define $u_{1.34}$ by $\mu_{\rm tot}(u \le u_{1.34}) > 1.34$ "Efficiency" of extended lenses

All smaller impact parameters produce a magnification above $\mu > 1.34$

By definition $u_{1.34}$ is 1 for point-like lenses

Define $u_{1.34}$ by $\mu_{\rm tot}(u \le u_{1.34}) > 1.34$ "Efficiency" of extended lenses

All smaller impact parameters produce a magnification above $\mu > 1.34$

Define $u_{1.34}$ by $\mu_{\text{tot}}(u \le u_{1.34}) > 1.34$ "Efficiency" of extended lenses

All smaller impact parameters produce a magnification above $\mu > 1.34$

Define $u_{1.34}$ by $\mu_{\text{tot}}(u \le u_{1.34}) > 1.34$ "Efficiency" of extended lenses

All smaller impact parameters produce a magnification above $\mu > 1.34$

Constraints on DM fraction

Using the differential event rate, find constraints given expected number of (non-observed) events. Generalised for extended objects using an <u>extended lens efficiency</u>.

As expected, constraints on extended objects are weaker...

Ogle-IV

Constraints on DM fraction

Using the differential event rate, find constraints given expected number of (non-observed) events. Generalised for extended objects using an <u>extended lens efficiency</u>.

DC, D. McKeen, N. Raj, Z. Wang, PRD, arXiv:2007.12697 [astro-ph.CO]

 $M(\mathrm{M}_{\odot})$

Miguel Crispim-Romao, DC, Benedict Crossey, Daniel Godines, PRD, arXiv:2506.20709

Miguel Crispim-Romao, DC, Benedict Crossey, Daniel Godines, PRD, arXiv:2506.20709

Miguel Crispim-Romao, DC, Benedict Crossey, Daniel Godines, PRD, arXiv:2506.20709

For competitive constraints, need FPR $\,< 10^{-7}$

cut	FPR	$ar{\epsilon}$
BIC ratio > 3.28	10^{-7}	0.38
BDT > 0.999	10^{-7}	0.34
$\chi^2/\text{d.o.f.}$ ratio > 10	3.5×10^{-4}	0.30
$\chi^2/\text{d.o.f. ratio} > 10, \widetilde{u}_0 < 1$	1.1×10^{-4}	0.20

Miguel Crispim-Romao, DC, Benedict Crossey, Daniel Godines, PRD, arXiv:2506.20709

Define a cut in false positives — what fraction of events is identified?

Miguel Crispim-Romao, DC, Benedict Crossey, Daniel Godines, PRD, arXiv:2506.20709

In a macro-lens background, Einstein radius of a microlens effectively boosted by $\sqrt{\mu_t}$ e.g. Diego et al., ApJ, arXiv:1706.10281

ightarrow define an extended lens efficiency $e_{\rm lens}^2 - m \left(e_{\rm lens} \sqrt{\mu_t} \right) = 0$ such that for $m(\tau) = 1$, $e_{\rm lens} = 1$ this is the one of the roots of μ^{-1}

Not competitive for PBHs, but sensitive to much more dilute EDOs than galactic microlensing

DC, Crossey, Diego, Kavenagh, Palencia, arXiv:25XX.XXXX

EDOs and the early Universe

• Ultracompact mini haloes (UCMH, $\rho \sim r^{-3/2}$) are formed from the collapse of primordial overdensities

 The non-observation of UCMH can therefore be used to draw conclusions about the primordial power spectrum

• This has been done for e.g. PTAs and WIMPs (= model-dependent)

Clark, Lewis, Scott, MNRAS, arXiv:1509.02938

Bringmann, Scott, Akrami, PRD, arXiv:1110.2484

But we now have far more gravitational probes...

Assume a generalised power spectrum

EDOs formed with

$$\frac{R(z_c)}{\text{pc}} = 0.019 \left(\frac{1000}{z_c + 1}\right) \left(\frac{M(z_c)}{M_{\odot}}\right)^{1/3} \text{ with } M(z_c) = \frac{z_{\text{eq}} + 1}{z_c + 1} M_i$$

Assume a generalised power spectrum

EDOs formed with

$$\frac{R(z_c)}{\text{pc}} = 0.019 \left(\frac{1000}{z_c + 1}\right) \left(\frac{M(z_c)}{M_{\odot}}\right)^{1/3} \text{ with } M(z_c) = \frac{z_{\text{eq}} + 1}{z_c + 1} M_i$$

This means not all EDO constraints map to primordial power spectrum constraints

- CMB accretion (generalised to larger EDOs)
- Wide binary evaporation

• "ICARUS" microlensing (generalised from PBHs to EDOs)

DC, Sevillano Muñoz, JCAP, arXiv:2403.13072

Ramirez and Buckley, MNRAS, arXiv:2209.08100

for UCMH collapsing at
$$z_c$$
, $\frac{R(z_c)}{\text{pc}} = 0.019 \left(\frac{1000}{z_c + 1}\right) \left(\frac{M(z_c)}{M_{\odot}}\right)^{1/3}$ with $M(z_c) = \frac{z_{\text{eq}} + 1}{z_c + 1} M_i$

To conclude,

- All of our current evidence for Dark Matter is gravitational; many dark matter models feature substructure
- Microlensing provides a way to look for dark matter substructure of a large range of sizes and masses
 - → Extended objects may give unique microlensing signatures
 - → Non-observation can be used to derive constraints

To conclude,

- All of our current evidence for Dark Matter is gravitational; many dark matter models feature substructure
- Microlensing provides a way to look for dark matter substructure of a large range of sizes and masses
 - → Extended objects may give unique microlensing signatures
 - → Non-observation can be used to derive constraints

 Caustic crossings in giant arcs are an opportunity to probe lenses with an even bigger radius

 Non-observations of UCMH can be used to constrain the curvature power spectrum on CMB-inaccessible scales

Thank you!

...ask me anything you like!

djuna.l.croon@durham.ac.uk | djunacroon.com

Solving the lens equation $u = \tau - \frac{m(\tau)}{\tau}$

Solving the lens equation $u = \tau - \frac{m(\tau)}{\tau}$

Solving the lens equation $u = \tau - \frac{m(\tau)}{\tau}$

 \rightarrow at $u_{\rm caustic}$, number of solutions jumps from 1 to 3

Boson Star Events w/ OGLE-II Timestamps

Boson Star Events w/ OGLE-II Timestamps

Miguel Crispim-Romao, DC, Benedict Crossey, Daniel Godines, PRD, arXiv:2506.20709

- Primordial curvature perturbations with amplitude $\mathcal{P}_{\mathcal{R}}(k)$ determine the variance $\sigma_{\chi,H}(R)$ of CDM density fluctuations at horizon entry
 - If $\delta_{\chi}(R)$ exceeds a threshold $\delta_{\chi}^{\min}(R) \sim 10^{-3}$, the region collapses into an UCMH (much smaller than for PBHs)
 - If $\sigma_{\chi,H}(R)$ is too large many regions will exceed $\delta_{\chi}^{\min}(R)$

- Primordial curvature perturbations with amplitude $\mathcal{P}_{\mathcal{R}}(k)$ determine the variance $\sigma_{\chi,H}(R)$ of CDM density fluctuations at horizon entry
 - If $\delta_\chi(R)$ exceeds a threshold $\delta_\chi^{\min}(R) \sim 10^{-3}$, the region collapses into an UCMH
 - If $\sigma_{\chi,H}(R)$ is too large many regions will exceed $\delta_\chi^{\min}(R)$
- From f_{DM} we work backward:
 - f_{DM} sets a max collapse probability $eta_{max}(R)$ at redshift z_c
 - In Gaussian theory, $\beta(R)\sim \exp[-\delta_{min}^2/(2\sigma^2(R))]$. Thus β_{max} fixes the largest allowable $\sigma(R)$
 - Since $\sigma^2(R)$ is essentially an integral over $\mathscr{P}_{\mathscr{R}}(k)$ around $k \sim 1/R$, limiting $\sigma(R) \Rightarrow$ upper limit on $\mathscr{P}_{\mathscr{R}}(k)$