

Dark Matter Searches with Low-energy Cosmic Antinuclei

Mengjiao Xiao
Shanghai Jiao Tong University
2025-09-30

AMS-02: Physics Reports, Vol 894 (2021)

DAMPE, Nature (2017)

- □GeV gamma excess at GC center by Fermi-LAT: dark matter of O(10-100) GeV?
- □Positron/electron excess by PALEMA, AMS-02, Fermi-LAT, CALET, DAMPE: ~TeV dark

matter?

- □Antiproton excess in the 10-20 GV rigidity by AMS-02: dark matter of O(10-100) GeV?
 - lacktriangle Consistent with dark matter interpretation of GeV γ excess
- □Antihelium/antideuteron "candidates" by AMS-02?

AMS Candidate Anti-He4 event (p = 32.6 GeV/c)

- □Antiproton excess in the 10-20 GV rigidity by AMS-02: dark matter of O(10-100) GeV?
 - Consistent with dark matter interpretation of GeV γ excess
- □Antihelium/antideuteron "candidates" by AMS-02?

ALICE, Nucl. Phys. A 971 (2018) 1-20

- □Antiproton excess in the 10-20 GV rigidity by AMS-02: dark matter of O(10-100) GeV?
 - Consistent with dark matter interpretation of GeV γ excess
- □Antihelium/antideuteron "candidates" by AMS-02?

AMS-02 talk on ICRC 2025

- □Antiproton excess in the 10-20 GV rigidity by AMS-02: dark matter of O(10-100) GeV?
- Consistent with dark matter interpretation of GeV γ excess
- □Antihelium/antideuteron "candidates" by AMS-02?

Cosmic rays are full of surprises, but DM interpretation is complicated by astrophysical backgrounds!

AMS Candidate Anti-He4 event (p = 32.6 GeV/c)

Dark Matter Detection with Cosmic Rays

□ Assumption: dark matter annihilation/decay follows different kinematics (i.e. via new physics) than conventional productions.

Common challenge (*FUN!*) = minimize/constrain astrophysical bkg. maximize predicted dark matter signal

- □ Directly probes process that sets DM abundance!
- ☐ But, large systematic uncertainties
 - Comic ray propagation uncertainty
 - Hadronic interaction
 - Backgrounds from astrophysical sources
 - DM distribution profiles
 - DM annihilation final states
 -

Antideuterons as Dark Matter Signature

□ Low-energy cosmic *antideuterons*: essentially background-free signature of dark matter, and *MEASURABLE!!*

P. von Doetinchem+ JCAP 08 (2020)

Antideuterons as Dark Matter Signature

□ Low-energy cosmic *antideuterons*: essentially background-free signature of dark matter, and *MEASURABLE!!*

"A confirmed detection of low-energy antideuterons or antihelium would be transformative, as these channels are thought to be essentially background-free..."

— from Snowmass 2021 Cosmic Frontier

Particle Dark Matter Report

kinetic energy [GeV/n]

The GAPS Balloon Mission

- ☐ GAPS=General AntiParticle Spectrometer
 - Antarctic balloon experiment
- ☐ Unique sensitivity to *low-energy cosmic antinuclei* using novel exotic atom decay signatures: X-rays + charged particles
- □ Primary goal: low-energy (KE≲0.25 GeV/*n*) *Antideuteron* as signature of new physics.
 - Can probe many general dark matter models.
- + High statistics measurement of low-energy *Antiproton* and open sensitivity to *Antihelium*.

First Antarctic balloon flight late-2025, and two follow-up flights planned.

Extoic atom technique verified at KEK: Aramaki+ Astropart. Phys. 49, 52-62 (2013) GAPS sensitivity to antideuterons: Aramaki+ Astropart. Phys. 74, 6 (2016)

Time-of-flight system: measures velocity, incoming angle and dE/dx, fast trigger

Time-of-flight system: measures velocity, incoming angle and dE/dx, fast trigger

Si(Li) tracker:

Slows/captures an incoming antiparticle

Extoic atom technique verified at KEK: Aramaki+ Astropart. Phys. 49, 52-62 (2013) GAPS sensitivity to antideuterons: Aramaki+ Astropart. Phys. 74, 6 (2016)

Time-of-flight system: measures velocity, incoming angle and dE/dx, fast trigger

Si(Li) tracker:

 Slows/captures an incoming antiparticle into an exotic atom

Extoic atom technique verified at KEK: Aramaki+ Astropart. Phys. 49, 52-62 (2013) GAPS sensitivity to antideuterons: Aramaki+ Astropart. Phys. 74, 6 (2016)

Extoic atom technique verified at KEK: Aramaki+ Astropart. Phys. 49, 52-62 (2013) GAPS sensitivity to antideuterons: Aramaki+ Astropart. Phys. 74, 6 (2016)

Time-of-flight system: measures velocity, incoming angle and dE/dx, fast trigger

Si(Li) tracker:

Slows/captures an incoming antiparticle into an exotic atom

Antiparticle mass

Measures the decay X-rays

$$E_X = (ZZ)^2 \frac{M^*}{m_e^*} R_H \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

Target material

Extoic atom technique verified at KEK: Aramaki+ Astropart.Phys. 49, 52-62 (2013) GAPS sensitivity to antideuterons: Aramaki+ Astropart.Phys. 74, 6 (2016)

Time-of-flight system: measures velocity, incoming angle and dE/dx, fast trigger, tracks of outgoing particles

Si(Li) tracker:

- Slows/captures an incoming antiparticle into an exotic atom
- Measures the decay X-rays
- Tracks the annihilated products (charged π & p)

Extoic atom technique verified at KEK: Aramaki+ Astropart. Phys. 49, 52-62 (2013) GAPS sensitivity to antideuterons: Aramaki+ Astropart. Phys. 74, 6 (2016)

Time-of-flight system: measures velocity, incoming angle and dE/dx, fast trigger, tracks of outgoing particles

Si(Li) tracker acts as:

- <u>Target</u> to slow/capture an incoming antiparticle into an exotic atom
- X-ray Spectrometer to measure the decay X-rays
- Particle Tracker to measure the resulting dE/dX, stopping depth and annihilated hadrons

GAPS Science: Antideuteron

☐ The GAPS antideuteron search is sensitive to a wide range of generic DM models:

GAPS Energy Range

Note: Any antideuteron signal needs to be compatible with antiproton constraints!

GAPS Science: Antiproton

□~500 antiprotons (≲0.25 GeV/n) for each balloon flight.

o BESS: 29 at ~0.2 GeV

PAMELA: 7 at ~0.25 GeV

o AMS-02: E>0.25 GeV

- ✓ Validate GAPS novel anti-nuclei identification technologies.
 - ➤ Reduce systematic uncertainties for antideuteron search.

- > Probe *light dark matter*, leading constraints on *primordial black hole* evaporation.
- > Provide a novel insight on *cosmic-ray propagation* models.

GAPS Science: Antihelium

☐ GAPS flux sensitivity to antihelium-3 (three 35-day long duration flights).

- **2018:** "To date, we have observed eight events...with Z = -2. All eight events are in the helium mass region."
 - S. Ting (La Palma, AMS overview)

AMS Candidate Anti-He4 event (p = 32.6 GeV/c)

- > Extends to lower energies (0.11-0.3 GeV/n), complementary to AMS-02.
 - o Capable of confirming signal, orthogonal detection technique, uniquely low bkg.

GAPS Instrument

☐ Time-of-Flight (TOF)

- Near-hermetic containment of tracker
- Velocity, trajectory and dE/dx measurement
- High-speed trigger and veto

☐ Si(Li) Tracker → Led by SJTU

- Target to capture light nuclei ≤0.25 GeV/n
- Tracker for primary and secondary hadrons
- Spectrometer for de-excitation X-rays

□Thermal System

Oscillating Heat Pipe for tracker cooling

❖Support instrumentation

Electronics, Solar panels, Gondola

GAPS Instrument Integration

2020/2021, GFP @MIT-Bates, MA

2021, initial integ. @MIT-Bates, MA

2022, full integ. @Berkeley-SSL, CA

6/2023, TVAC test @NTS, CA

1/2024, upgrades @CU-Nevis, NY

7/2024, compatibility testing @CSBF, TX

12/2024, commission & launch attempts @McMurdo, Antarctic

GAPS Instrument Performance: *ToF*

□ToF performance from the Antarctic commissioning.

- Design goal: <500 ps timing resolution for TOF system to be able to separate proton and deuteron.
- Cross-calibration with different paddle combinations to estimate timing resolution

> Achieved: measured better than ~350 ps for all paddle combinations!

GAPS Instrument Performance: *Tracker*

GAPS

☐ Tracker performance from the Antarctic commissioning.

Energy depositions on track

Track position resolution

GAPS Instrument Performance: Trigger

☐ Design goal: 450 - 500 Hz trigger rate (maxing out telemetry bandwidth), capability to trigger on multi-track events.

- GAPS trigger allows for 2 modes in parallel (multi + single track)
- Modes can be tuned with pre-scale factor
- On ground multi track ~few Hz, single track (w. prescale) ~450-500 Hz

➤ Achieved: stable operations at ground with tuned trigger at 450-500 Hz possible, can record multi track events, trigger acceptance verified with simulations!

GAPS Instrument Performance: System

- □ ~10M muon events are collected from the on-ground testing in the Antarctica.
 - Event signature are well understood and more detailed analysis is undergoing.

Summary & Conclusions

□Low-energy cosmic antinuclei are unexplored and unique for new physics

(e.g. dark matter) searches.

☐ GAPS aims to deliver:

- o unprecedented \bar{d} sensitivity by ~2 orders of magnitude below the current best limits, "smoking-gun" signature of dark matter.
- \circ precision \bar{p} measurement in unexplored energy range.
- open sensitivity to low-energy cosmic anti-He.
- □GAPS instrument is READY in Antarctica and planed for flight in late 2025, *Stay tuned!!*

GAPS Collaboration

Massachusetts Institute of **Technology**

UC Berkeley

ΤΟΚΛΙ

THANK YOU!

