Evaporating Primordial Black Holes: Reformation and Isocurvature Perturbations

THK, Philip Lu, Phys.Lett.B 865 (2025) 139488, arXiv:2411.07469

THK, Jinn-Ouk Gong, Donghui Jeong, Dong-Won Jung, Yeong Gyun Kim, and Kang Young Lee, arXiv:2503.14581

Speaker: **TaeHun Kim** (School of Physics, KIAS, Korea)

Abstract

"Light mass PBHs with $M \lesssim 10^9 \, \mathrm{g}$ can impact the cosmology depending on their early Universe abundance."

Outline

- Introduction: PBHs
- PBH reformation (Dominating; arXiv:2411.07469)
- Isocurvature perturbation generation (Not dominating; arXiv:2503.14581)
- Summary & Conclusion

Introduction: PBHs

• "PBHs are *hypothetical* black holes that formed soon after the Big Bang"

https://en.wikipedia.org/wiki/Cosmic_inflation#/media/File:History_of_the_Universe.svg

Introduction: PBHs

Carr et. al. (2021)

Constraint plot for wide range of masses

Constraints

- Evaporation
- Lensing
- Gravitational waves
- CMB polarization (accretion)
- Dynamical
- CMB dipole
- Candidates of
 - Dark matter
 - Microlensing event
 - Binary black hole mergers
 - Super massive black holes

Introduction: PBHs

Carr et. al. (2021)

• Particularly interested below $\sim 10^{15} \, \mathrm{g}$: Evaporation

- $M \sim 10^{14}$ g evaporates now
 - CMB, γ and cosmic rays
- $M \sim 10^9$ g evaporates at BBN
 - Light element abundances
- $M \lesssim 10^9$ g: no constraints
 - → We see their impact on cosmology depending on their domination.

Abstract

"Light mass PBHs with $M \lesssim 10^9 \, \mathrm{g}$ can impact the cosmology depending on their early Universe abundance."

- Outline
 - Introduction: PBHs
 - PBH reformation (Dominating; arXiv:2411.07469)
 - Isocurvature perturbation generation (Not dominating; arXiv:2503.14581)
 - Summary & Conclusion

Cosmic timeline of eMD by PBHs

Copious production of PBHs

eMD starts:

 $ho_{\mathrm{PBH}} \propto 1/a^3$ $ho_r \propto 1/a^4$

Reheating by PBH evaporation:

Standard timeline resumes

Cosmic timeline of eMD by PBHs

- Stochastic GW emission at the reheating
 - Oscillating gravitational potential
 - → scalar-induced GW
- This free streaming energy density is constrained by $\Delta N_{\rm eff} \lesssim 0.5$ at CMB

Inomata et. al. (2021) Domenech et. al. (2021)

• Allowed region of $(M_{\text{PBH}}, \beta_{\text{if}})$ for PBH eMD

- PBH reformation
 - Random overdensities in PBH distribution → collapse → much heavier PBHs

- This can happen during eMD, because
 - Gravitational collapse of overdensities is easier in MD then RD
 - Matter density perturbation grows during MD

- Gravitational collapse in MD
 - No pressure: Eventually any overdensity will collapse
 - But what really happens during the collapse?
 - Spatial profile of an overdensity should be homogeneous and isotropic enough
 - To fall into its own Schwarzschild radius without virialization

Khlopov, Polnarev (1980) Polnarev, Khlopov (1981) Harada et. al. (2016)

Harada et. al. (2017)

Kokubu et. al. (2018)

??? (not well known)

- Naked singularity
- Virialized
- Becomes radiation and stop by pressure
- •

- Estimation of collapse probability : $\beta \simeq 0.05556 \times \sigma^5$
 - Only power-law suppressed.

• Density power spectrum during eMD and resulting σ

- Gray = Randomly placed initial PBHs
 - Poisson noise
- Black = Growth by transfer function

•
$$\mathcal{P}_{\delta}(t) = \mathcal{P}_{\delta}(t_{if}) \times \mathcal{T}^{2}(t)$$

• Red =
$$\frac{d\sigma^2}{d \ln k} = \mathcal{P}_{\delta}(t) \times W^2(kr)$$

•
$$\sigma \sim 10^{-3} - 10^{-4}$$

•
$$\beta \sim 10^{-20}$$

•
$$f_{\text{PBH}} \sim (M_{\text{PBH,if}} / 1 \text{ g})^{-3/2}$$

Reformed PBH population case study

Case	$T_{\rm if}~({ m GeV})$	$eta_{ m if}$	γ	$f_{ m PBH}$
A	2.88×10^{15}	1.08×10^{-4}	0.5	2.40×10^{-5}
В	5.89×10^{14}	1.45×10^{-5}	0.5	9.05×10^{-12}

- Case A: Reformed PBH population right below the current BBN bound
- Case B: Reformed PBH population
 right below the current γ-ray bound
- "PBHs with observable signals are reformed from much lighter PBHs produced in the early Universe"
 - Population decoupling

Correlated GW signal

Remaining majority of original PBHs evaporate and emit GWs

- High frequency GWs are emitted
 - $\sim 10 \text{ kHz} 1 \text{ MHz}$
- Could be detected by the next generation CMB-S4 experiment through $\Delta N_{
 m eff}$
- Correlated GW signal.
 "Possible multi-messenger
 detection of PBH reformation"

Abstract

"Light mass PBHs with $M \lesssim 10^9 \, \mathrm{g}$ can impact the cosmology depending on their early Universe abundance."

- Outline
 - Introduction: PBHs
 - PBH reformation (Dominating; arXiv:2411.07469)
 - Isocurvature perturbation generation (Not dominating; arXiv:2503.14581)
 - Summary & Conclusion

Cosmological perturbations

- Smooth 0th order FLRW Universe + 1st order perturbations
- Gauge-invariant combination: Curvature perturbation ζ

$$\zeta \equiv \psi - H \frac{\delta \rho}{\dot{\bar{\rho}}}, \qquad \zeta_X = \psi - H \frac{\delta \rho_X}{\dot{\bar{\rho}}_X}$$

- $X = \gamma$ (includes ν and symmetric b), b (asymmetric part only), and d.
- Adiabatic condition : Single source

$$\zeta_{\gamma} = \zeta_b = \zeta_d$$

Cosmological perturbations

• Isocurvature perturbations : Multiple sources (PBHs in this work)

$$S_{XY} \equiv 3(\zeta_X - \zeta_Y) = -3H\left(\frac{\delta\rho_X}{\dot{\bar{\rho}}_X} - \frac{\delta\rho_Y}{\dot{\bar{\rho}}_Y}\right)$$

- Constrained by CMB observation (Planck 2018).
- This work: "PBH evaporation generates isocurvature perturbations"
 - → CMB constrains evaporating PBHs through isocurvature perturbation.
 - PBH distribution ≠ Average (adiabatic mode): "PBHs are biased"
 - Composition : Hawking radiation ≠ Inflationary reheating products (background)

PBHs as an isocurvature source

Distribution at cosmological scale

Example particle composition:

- After evaporation, each of γ , b, and d gets different perturbation
 - Isocurvature perturbations are generated.

PBHs as an isocurvature source

Example particle composition:

- Again, required two conditions are :
 - PBHs are biased ("black curve should be different from the blue curve")
 - Particle composition should be different ("two curves should not sum up as one")

PBHs as an isocurvature source

• The key equation: Isocurvature between X and Y is

Simplified case study

- Concrete demonstration: Example constraint for evaporating PBHs
 - PBH bias
 - Primordial non-Gaussianity of $f_{\rm NL} \sim \mathcal{O}(0.01-0.1)$
 - Particle model
 - Baryon-symmetric Hawking radiation. No net baryons from PBHs; $\bar{\rho}_{b{\rm PBH,0}}=0$
 - Single scalar DM, out of equilibrium (no longer converts to SM)

Simplified case study – PBH bias

Distribution at cosmological scale

- Primordial non-Gaussianity : $\zeta = \zeta_G + (3/5) f_{NL} (\zeta_G^2 \langle \zeta_G^2 \rangle)$
 - Peak-background separation : $\zeta_s = (1 + 2f_{\rm NL}\zeta_{l,G})\zeta_{s,G} + f_{NL}(\zeta_{s,G}^2 + \langle \zeta_{s,G}^2 \rangle)$
 - Long mode enhances short mode's amplitude → Enhanced PBH clustering
 - PBH bias : $\zeta_{\rm PBH} \sim \mathcal{O}(10^2) f_{\rm NL} \times \zeta$

Simplified case study – Particle composition

Simplified case study – Particle composition

At present.

$\frac{\overline{\rho}_{b\text{PBH,0}}}{\overline{\rho}_{b,0}} = 0$

Simplified case study – Particle composition

 $rac{\overline{
ho}_{\gamma ext{PBH,0}}}{\overline{
ho}_{\gamma,0}}$ is nearly the same as $\Omega_{ ext{PBH,ev}}$

Isocurvature constraints on PBH

• PBH-generated isocurvature perturbation

$$S_{XY,0} = 3\left(\frac{\bar{\rho}_{XPBH,0}}{\bar{\rho}_{X,0}} - \frac{\bar{\rho}_{YPBH,0}}{\bar{\rho}_{Y,0}}\right)(\zeta_{PBH} - \zeta) \neq 0$$

• Observed quantity: Isocurvature fraction

$$\beta_{\rm iso} = \frac{\mathcal{P}_S}{\mathcal{P}_{\zeta} + \mathcal{P}_S} = \frac{\left(S_{\gamma d,0} + \frac{\Omega_b}{\Omega_d} S_{\gamma b,0}\right)^2}{\zeta^2 + \left(S_{\gamma d,0} + \frac{\Omega_b}{\Omega_d} S_{\gamma b,0}\right)^2} < 0.001 \text{ (Planck 2018)}$$

Isocurvature constraints on PBH

- Isocurvature bound on PBHs
- Past abundance for $M \lesssim 10^9$ g can now be observationally constrained
 - Depends on DM model and $f_{\rm NL}$
 - But the first observational constraints for PBHs with $M \lesssim 10^9 {
 m g}$ (up to our knowledge)

Isocurvature constraints on PBH

- Above the gray line, PBH domination happens
 - Universe is effectively a single fluid
 - No isocurvature constraints above the gray line

Abstract

"Light mass PBHs with $M \lesssim 10^9 \, \mathrm{g}$ can impact the cosmology depending on their early Universe abundance."

- Outline
 - Introduction: PBHs
 - PBH reformation (Dominating; arXiv:2411.07469)
 - Isocurvature perturbation generation (Not dominating; arXiv:2503.14581)
 - Summary & Conclusion

Summary & Conclusion

- PBHs with $M \lesssim 10^9$ g are currently not constrained by observations
- If they dominated the Universe, they could have undergone reformation

"PBH reformation can decouple PBH populations in the late Universe and in the early Universe."

• If they remained subdominant, they generate isocurvature perturbations

"CMB can observationally constrain the evaporating PBHs."

THE END. Thank you!

Backup slides

Cosmic timeline of eMD by PBHs

- β_{if} : Initial PBH energy fraction
- M_{PBH}: Initial PBH mass

- Transfer function at a given time
 - $y = a/a_{eq}$ (>> 1 is shown), $\kappa = k/k_{eq}$
 - At a given time, \mathcal{T} is constant for $k>k_{eq}$ and decreases for smaller k.
 - $k>k_{eq}$: Short modes start to grow simultaneously when eMD starts
 - $k < k_{eq}$: Growth is delayed until they enter the horizon during eMD

Reformed PBH population case study

Case	$T_{\rm if}~({ m GeV})$	$eta_{ m if}$	γ	$f_{ m PBH}$
A	2.88×10^{15}	1.08×10^{-4}	0.5	2.40×10^{-5}
В	5.89×10^{14}	1.45×10^{-5}	0.5	9.05×10^{-12}

- $f_{\text{PBH}} \propto \beta \times M_{\text{PBH,if}}^{-3/2}$
 - Steeply decreasing $f_{\rm PBH}$ for larger $M_{\rm PBH,if}$
- Practical reformation happens only for $M_{\mathrm{PBH,if}} \lesssim 10^2 \, \mathrm{g}$
 - High scale inflation
 - Fragmented PBHs from FOPT
- Cannot cover the DM window
 \omega