

PandaX: Status and Prospects

Jianglai Liu

State key Laboratory of Dark Matter Physics

Tsung-Dao Lee Institute and School of Physics and Astronomy

Shanghai Jiao Tong University

Tsung-Dao Lee Institute, headquarter of PandaX

青海冷湖 JUST光谱望远镜

JUST Spectroscopic Telescope Lenghu, Qinghai

- 4300米海拔,4.4米口径双焦点 ⑧
- 国际最优视宁度条件,中位值0.75角秒 @
 - 探索黑暗和动态的宇宙(

四川锦屏

PANDAX暗物质与中微子探测装置 PandaX Dark Matter and Neutrino Detector Jinping, Sichuan

- 数十吨级PandaX液气探测器 @
- 2400米岩石覆盖,国际最深,缪子通量<10·10/秒/厘米² ❷
 The deepest underground lab with a depth of 2400m
 - 以极低的本底探测暗物质和中微子信号 @ Dark matter and neutrino detection at extremely low background

科研版图

2000km

EXPERIMENTAL PLATFORMS AND REMOTE OBSERVATION SITES

上海张江 大本营实验平台

Research Platforms Shanghai

- ◎ 实验室天体物理实验平台,瞬间磁场10¹⁰G,电场10¹³V/cm Platform for Laboratory Astrophysics
- 预扑材料研究实验平台,STM实空间分辨率高于0.5纳米 Platform for Topological Materials
- 耐力 大规模科学计算平台,总算力6PFLOPS

 Platform for High-Performance Computing

海南南海 TRIDENT中微子望远镜

TRIDENT Neutrino Telescope West Pacific Ocean

- 3500米深海下4km*4km*0.5km的切伦科夫光探测阵列 4km*4km*0.5 km Cherenkov Telescope Array at 3500m depth
- 探測能量、指向能力、角分辨率、灵敏度较第一代中微子望远镜提高一个数量级 Capture high-energy cosmic neutrinos
- 探索极端天体环境下的宇宙射线起源及基本物理规律 Explore the origin and fundamental laws of cosmic rays under extreme astronomical environment

挑战根本性科学问题

Address the most fundamental science challenge

极端宇宙条件下物质的起源与演化
 The origin and evolution of matter under extreme cosmic conditions

利用专用科学装置群的极端探测能力 发挥有组织科学研究的优势

Coordinated research with experts from different research areas utilizing our state-of-the-art facilities

DM: low hanging fruit?

DM: low hanging fruit?

Neutrinos are Dirac or Majorana?

 $\bar{\mathbf{v}} = \mathbf{v}$?

Neutrinoless double-β decay (0vDBD)

From Physics World

Majorana neutrino may be an important link in connecting to matter-antimatter asymmetry in our universe.

Particle and Astrophysical Xenon observatory

PandaX Collaboration

Global context

construction

2018.4 water tank 2019.8 PandaX-4T instllation

2020.5 liquid xenon filling

2020/6-2020/11 integration tests

Data taking interleaved with surgeries and lab construction

Time	Activity
2020/11- 2021/04	commissioning (Run0) 95 days
2021/07- 2021/10	tritium removal xenon distillation, gas flushing, etc.
2021/11- 2022/05	physics run (Run1) 164 days
2022/09- 2023/12	CJPL B2 hall renovation xenon recuperation, detector upgrade
2024/01- 2024/07	resuming operation
Current status	physics data taking (Run2)

Many physics opportunties

1.5 tonne*year, blinded analysis, Run0+1

S2-only approach

Tight limits on DM-e scattering with S2-only analysis

B8 neutrino CEvNS

- Greatly benefit from S2-only data (~ton×year)
- Best-fit Po avanta: 75+20/62 ank/) and 2 5+1 2/61 62 naired)
- Reject ba
- PRL 133,
- XENONn

Physics Magazine highlights of the year 2024

Calibrating PandaX at MeV

Th232 gamma calibration data

Internal gamma peaks

Understanding background at MeV

JHEP 05 (2025) 089, arXiv:2502.03017

¹³⁴Xe: a unique blessing

PRL 132, 152502 (2024)

Search for Xe136 0vDBD

Science Bulletin Vol. 70,11 (2025) arXiv:2412.13979

Lifetime $> 2.1 \times 10^{24}$ year 90% CL $m_{\beta\beta}$ <0.6-1.4 eV

2024: Shiny again!

Newly implemented water veto detector

- installed 270 8-inch PMTs in late 2023
- inner layer: 2 m radius, about 1 m to the outer surface of the LXe cryostat
- outer layer: 5 m radius
- Seeing muons, seeing neutrons!
- Future: directly measure atmospheric neutrinos with 4000ton water detectors

PandaX-xT

B = bkg rate in ROI per unit target mass

A multi-ten ton liquid xenon project at CJPL-II

- Searching for DM-nucleon interactions to neutrino floor, a decisive test on WIMP paradigm
- 2. A sensitive test on Majorana nature of neutrinos using the 0vDBD of ¹³⁶Xe, covering inverted neutrino MO parameter space
- 3. Detecting low-energy neutrinos from the Sun and other astrophysical and terrestrial origins, and exploring other ultra-rare signals.

Next Generation Xe

PandaX-xT: step-wise strategy to a 40-ton-scale LXe observatory at CJPL

PandaX-20T (2027, mostly funded)

PandaX-4T

PandaX-40T

PandaX-20/40T @ CJPL

TPC development

- Field cage: Kapton film with copper embedded
- Supporting structure: low radioactivity PMMA (developed in JUNO) or PTFE
- 400 kg prototype TPC under construction @TDLI
- 2.6 m electrodes built and tested

New photosensors

- 10 m² top/bottom coverage
- Hamamatsu R12699 (2"x2"), iterated two versions (v1/v2)
- Dark noise <10 Hz/channel, QE @178 nm > 30%
- arXiv:2412.10830, NIMA

Liquid xenon storage and handling

Each storage tank: 6-m³ (maximum 18 ton) of LXe Cryogenic pump: filling/emptying detector @ 1.5 ton/hour.

Cryogenics and recirculation

- Flexible with redundancy
- Cooling Power:
 - ≥ 1500W@178K (GM cooler)
- + others
- Online purification speed:
- 3.5-ton/day for gas, 8-ton/day for liquid

Distillation towers

Kr distillation tower: 30 kg/hour.

Target Kr concentration in Xe: 0.01 ppt

Rn distillation tower: 850 kg/hour.

Target: 0.5 μBq/kg

"Baseline" background

	Component	Background assumption
1	Photosensors	U/Th/K = 0.02/0.01/1.5 mBq/cm ² Hamamatsu R12699 prototype
2	Inner vessel	U/Th/K 5 ppt (g/g)
3	Kr	0.01 ppt (mol/mol)
4	Rn222	0.5 uBq/kg

Dark matter sensitivity

Physics reach

Majorana sensitivity

Complementarity with XLZD/ARGO

- Friendly competition good for the science
- Data taking in parallel => increase the world data for global analysis
- Different experimental sites/detector design features/background
 ⇒ Cross checks
- Learn from each other's lessons and technological breakthrough
- Joint force in a general way

Schedule

PandaX Project Timeline	2022 20)23 2	024 202	5 2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042
Operation of PandaX-4T, and R&D for the upgrade																				
Project Phase-I: construct and operate PandaX-xT; procure xenon by stages and upgrade detector along the way while keeping high running-time; 20T => 43T																				
Project Phase-II: with isotopically separated xenon (versatile configurations)																				

PandaX-xT first open meeting (Apr. 7-11, 2025)

- A few groups in Russian, Japan, UK (more on the neutrino side) expressed some interest of joining force
- Applying for NSFC-CJPL international cooperation "incubator" funding

Summary

- PandaX-4T has developed a very rich physics program in DM and Neutrinos(!)
 - Technically: developing more and more sensitive detectors
 - Physics-wise: stronger connections with theorists
- A pragmatic approach with a stage-wise upgrade to PandaX-xT aiming for VERY exciting physics
 - Next stage: PandaX-20T
- Highly welcome collaborators

A Golden Reactor Neutrino Event

Mon, 25 Aug 2025 22:50:45 RecEnergy = 6.3 MeV RecVertex (-9458, -9707, 3820) mm

Prompt e+ signal

Delay neutron signal

Calibration

1D, 2D, 3D scan systems using laser/e⁺/ γ /n sources + n/ α background events

Energy Non-linearity is known to < 1%!

A Clean Detector

- VETO Water:
 - \Rightarrow U/Th<0.4×10⁻¹⁵ g/g, ²²²Rn<10 mBq/m³, ²²⁶Ra<1 mBq/m³
- All detector materials are clean and water shielding works:
 - ⇒ Single rate <7 Hz for R<17.2m & E>0.7MeV (design 7.2Hz)
- LS very close to Borexino, further reduction after ²²²Rn decays
 - \Rightarrow 238U<3×10⁻¹⁷ g/g (low radon region)
 - \Rightarrow ²³²Th<1×10⁻¹⁶ g/g (R<13m)
 - \Rightarrow ²¹⁰Po<1×10⁵[cpd/kt]

Radiopurity control of raw material:

- ✓ Meticulous Monte Carlo Simulation for proper distribution of radioactivity budget
- √ Careful material screening
- ✓ Accurate detector production handling

Better than spec. by 15%! *JHEP* 11 (2021) 102

Radiopurity control:

- ► Leak check of all joints (each < 10^{-8} mbar·L/s) for 222 Rn and 85 Kr $^{\sim}$
- Cleaning and washing of all pipes & vessels to remove dust (by check water/LAB cleanness)
- Clean room environment during installation
- Acrylic Surface treatment and protection(Rn daughters)
- LS filling scheme: water replacement and water washing

Recirculation probably impossible, unlike Borexino, KamLAND, SNO+,...