

Christoph Englert (Glasgow or Manchester depending on when you'll catch me here)

To precision frontiers with newish ideas?

based on [Anisha, Arco, Di Noi, CE, Mühlleitner, 2506.18555] [Anisha, Biermann, CE, Mühlleitner, 2510.xxxxx]

5th Asian-European Institutes Workshop 29/09/25

* fair to say that we don't understand the mechanism behind the weak scale...

* ...and no emerging evidence of it being connected to more profound physics

Dark Matter? Baryogenesis? neutrino physics? ...

* fair to say that we don't understand the mechanism behind the weak scale...

* ...and no emerging evidence of it being connected to more profound physics

LHC outcome so far

* a Higgs boson, highly aligned with the SM hypothesis

* no compelling signs of new states

Dark Matter?

Baryogenesis?

... how can this be?

LHC outcome so far

- * a Higgs boson, highly aligned with the SM hypothesis
- * no compelling signs of new states

Dark Matter?

Baryogenesis?

... how can this be?

- * (current) model-independent EFT approaches provide little insight here
 - * no flavour

* no baryon number violation

* little CP

- * unrealistic sensitivity expectation scaling
- * still useful as an approach/tool, and intelligent people can hold two naively contracting ideas in their mind simultaneously....

'Strawman' scenarios

2HDM address SFOEWPT

* standard approaches using effective potentials at finite temperature

Upshot: New states need to be light.

Where are the exotics?

- * large accidental destructive interference effects for top-philic BSM [Gaemers, Hoogeveen `84] [Dicus et al. `94]
 - → exp. systematics: conceivable that this is not <u>yet</u> accessible at the LHC

Higgs precision beyond the LHC?

[Anisha et al. `25]

2.20 Allowed Points 0.010 FOEWPT $(\xi_p > 1)$ 2.05FOEWPT+FCC-ee - 1.90 0.005-1.750.000- 1.60 $-1.45 \, \stackrel{\circ}{\cancel{\circ}}$ -0.005FCC-ee proj. **-** 1.30 SM68% CL **1**.15 -0.01095% CL 1.00 -0.0050.010-0.0100.0000.005

HL-LHC Higgs couplings

FCC-ee Z pole programme

Higgs precision beyond the LHC?

Consistency with SM Higgs in the gauge sector after HL-LHC + Z pole

alignment without decoupling

Higgs precision beyond the LHC?

Consistency with SM Higgs in the gauge sector after HL-LHC + Z pole

alignment without decoupling

Will a Higgs run discover new physics?

Most likely yes.

Higgs precision!

'SMness' of HL-LHC & BSM facts of life

alignment without decoupling

discovery at e+e- at the latest

Higgs precision!

'SMness' of HL-LHC & BSM facts of life

alignment without decoupling

 \parallel

discovery at e+e- at the latest

My eyes are turning to CEPC - a huge opportunity for discovery-led research

cusp-vs.-core too big to fail missing satellites

• • •

Why should a hidden sector be trivial?

cusp-vs.-core too big to fail missing satellites

• • •

Why should a hidden sector be trivial?

Dark Matter!

cusp-vs.-core too big to fail missing satellites

...

Higgs sector extensions

Why should a hidden sector be trivial?

e.g. Higgs portals...

[Källén `52] [Lehmann `54]

direct detection constraints!

$$\langle 0|T\{S(x)S(0)\}|0\rangle = i \int_0^\infty dq^2 \,\rho_S(q^2) \int \frac{d^4p}{(2\pi)^4} \,\frac{e^{-ip\cdot x}}{p^2 - q^2 + i\epsilon},$$

(most complicated) dark sectors?

$$\langle 0|T\{S(x)S(0)\}|0\rangle = i \int_0^\infty \mathrm{d}q^2 \, \rho_S(q^2) \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \, \frac{e^{-ip\cdot x}}{p^2 - q^2 + i\epsilon}, \tag{K\"all\'en`52}$$

spectral density contains vast amount of physically relevant information

poles, branch cuts, LSZ factors,...

(most complicated) dark sectors?

* extreme case: *S* arises as an interpolating field in broken CFT with large anomalous dimension ("unparticles")

[Georgi `07]

$$2\pi \,\theta(q^2)\theta(q^0) \,\rho_S(q^2) = A_{d_{\mathcal{U}}} \,\theta(q^2)\theta(q^0) \,q^{2d_{\mathcal{U}}-4}$$

(most complicated) dark sectors?

* extreme case: *S* arises as an interpolating field in broken CFT with large anomalous dimension ("unparticles")

[Georgi `07]

$$1 \le d_{\mathcal{U}} < 2 \qquad 2\pi \theta(q^{2})\theta(q^{0}) \rho_{S}(q^{2}) = A_{d_{\mathcal{U}}} \theta(q^{2})\theta(q^{0}) q^{2d_{\mathcal{U}}-4}$$

$$-i \langle 0|T\{S(x)S(0)\}|0\rangle = \frac{A_{d_{\mathcal{U}}}}{2\sin(d_{\mathcal{U}}\pi)} \int \frac{\mathrm{d}^{4}p}{(2\pi)^{4}} \frac{e^{-ip\cdot x}}{(-p^{2}-i\epsilon)^{2-d_{\mathcal{U}}}} \xrightarrow{d_{\mathcal{U}}\to 1} \int \frac{\mathrm{d}^{4}p}{(2\pi)^{4}} \frac{e^{-ip\cdot x}}{p^{2}+i\epsilon}.$$

- * non-local theory with propagator scaling $\sim x^{-2d_{\mathcal{U}}}$ (expected for prim. operators)
- * IR CFT breaking scale relatively straightforward: $q^2 o q^2 \mu^2$

[Fox et al. `07]

(not so complicated) dark sectors!

- * extension to $d_{\mathcal{U}} > 2$ non-trivial: <u>local</u> subtraction terms to regularise behaviour [Cacciapaglia et al. `07, `08] perturbatively this means a momentum expansion in the S self-energies
- * a similar argument carries over to amplitudes

$$\langle 0|\mathcal{O}_{\mathrm{SM}}(x_1)\mathcal{O}_S(x_2)\mathcal{O}_S(x_3)|0\rangle \sim \frac{1}{|x_{23}|^{2+2d_{\mathcal{U}}}}.$$

....regularise divergent behaviour gives local effective theory

[Froissart `61]

$$\mathcal{L}^{\text{EFT}} = \mathcal{L}_{\text{SM}} - \Phi^{\dagger} \Phi \left(\frac{\eta_S}{2} S^2 + \frac{\eta_{KS}}{\Lambda^2} \partial_{\mu} S \partial^{\mu} S + \dots \right).$$

standard portal

emerging low-energy effective interactions

(not so complicated) dark sectors!

$$\mathcal{L}^{\text{EFT}} = \mathcal{L}_{\text{SM}} - \Phi^{\dagger} \Phi \left(\frac{\eta_S}{2} S^2 + \frac{\eta_{KS}}{\Lambda^2} \partial_{\mu} S \partial^{\mu} S + \dots \right).$$

st this Lagrangian is unquie at dimension-6, tree-level and intact \mathbb{Z}_2

[Song et al. `23, `23]

* at a technical level transparant treatment in the HEFT

e.g. [Anisha `24]

* such a theory is immediately constructed by SM + dark QCD SU(3)²/SU(3)

$$\mathcal{L}^{\text{EFT}} = \mathcal{L}_{\text{SM}} - \Phi^{\dagger} \Phi \left(\frac{f^2}{4\Lambda_1^2} \text{Tr}[M(\xi + \xi^{\dagger})] + \frac{f^2}{4\Lambda_2^2} \text{Tr}(\partial_{\mu} \xi^{\dagger} \partial^{\mu} \xi) + \dots \right).$$

...big hullabaloo - but does it work?

* relax Higgs signal strength constraints for $\eta_S \approx \eta_{KS} \frac{m_H^2 - 2m_S^2}{\Lambda^2}$.

$$\Gamma(H \to SS) = \frac{1}{32\pi} \sqrt{1 - \frac{4m_S^2}{m_H^2}} \frac{v^2}{m_H} \left(\eta_S + \eta_{KS} \frac{2m_S^2 - m_H^2}{\Lambda^2} \right)^2.$$

* relax Higgs signal strength constraints for $\eta_S \approx \eta_{KS} \frac{m_H^2 - 2m_S^2}{\Lambda^2}$.

$$\Gamma(H \to SS) = \frac{1}{32\pi} \sqrt{1 - \frac{4m_S^2}{m_H^2}} \frac{v^2}{m_H} \left(\eta_S + \eta_{KS} \frac{2m_S^2 - m_H^2}{\Lambda^2} \right)^2.$$

- * direct constraints (Higgs to invisible, on/offshell)
- * indirect constraints $-H - - = -i\hat{\Sigma}_{HH}(q^2)$ offshell probes (HH, ZZ, 4 tops)

universal Higgs coupling mods offshell probes (*HH*, *ZZ*, 4 tops)

$$= -i\Sigma_{HH}^{\text{Loop}}(q^2) + i\left(\delta Z_H(q^2 - m_H^2) - \delta m_H^2\right) + i\frac{2a_{\Box\Box}}{v^2}q^4,$$

* relax Higgs signal strength constraints for $\eta_S \approx \eta_{KS} \frac{m_H^2 - 2m_S^2}{\Lambda^2}$.

$$\Gamma(H \to SS) = \frac{1}{32\pi} \sqrt{1 - \frac{4m_S^2}{m_H^2}} \frac{v^2}{m_H} \left(\eta_S + \eta_{KS} \frac{2m_S^2 - m_H^2}{\Lambda^2} \right)^2.$$

- * direct constraints (Higgs to invisible, on/offshell)

universal Higgs coupling mods offshell probes (*HH*, *ZZ*, 4 tops)

$$= -i\Sigma_{HH}^{\text{Loop}}(q^2) + i\left(\delta Z_H(q^2 - m_H^2) - \delta m_H^2\right) + i\frac{2a_{\Box\Box}}{v^2}q^4,$$

$$a_{\square\square}^{\overline{\mathrm{MS}},\mathrm{fin.}}(\mu^2) = \frac{\eta_{KS}^2}{64\pi^2} \frac{v^4}{\Lambda^4} \log\left(\frac{\mu^2}{m_S^2}\right) + \mathcal{O}\left(\frac{p^2}{m_S^2}\right) < 0$$

* relax Higgs signal strength constraints for $\eta_S \approx \eta_{KS} \frac{m_H^2 - 2m_S^2}{\Lambda^2}$.

$$\Gamma(H \to SS) = \frac{1}{32\pi} \sqrt{1 - \frac{4m_S^2}{m_H^2}} \frac{v^2}{m_H} \left(\eta_S + \eta_{KS} \frac{2m_S^2 - m_H^2}{\Lambda^2} \right)^2.$$

- * direct constraints (Higgs to invisible, on/offshell)

universal Higgs coupling mods offshell probes (*HH*, *ZZ*, 4 tops)

$$= -i\Sigma_{HH}^{\text{Loop}}(q^2) + i\left(\delta Z_H(q^2 - m_H^2) - \delta m_H^2\right) + i\frac{2a_{\Box\Box}}{v^2}q^4,$$

$$a_{\square\square}^{\overline{\rm MS}, {\rm fin.}}(\mu^2) = \frac{\eta_{KS}^2}{64\pi^2} \frac{v^4}{\Lambda^4} \log\left(\frac{\mu^2}{m_S^2}\right) + \mathcal{O}\left(\frac{p^2}{m_S^2}\right) < 0$$

- * violation of positivity [Adams `06]
- * UV sensitivity/strong coupling

universal Higgs coupling modifications

Higgs propagation in 4 top production

Higgs pair production (inc H^3 interactions)

offshell Higgs to Z pairs

... sensitivity diluted through cancellations of momentum dependencies

[CE, Giudice, Greljo, McCullough `19]

Kinetically resurrecting the Higgs portal: astrophysics

- * can satisfy direct detection and relic abundance simultaneously
- * requires carefully arranging parameters, especially for light states

$$m_S = 55 \text{ GeV}, \ \eta_{KS} = -0.3,$$

 $\eta_S = 0.003, \ (\text{BR(inv}) = 1.9\%)$

Kinetically resurrecting the Higgs portal: astrophysics

- * can satisfy direct detection and relic abundance simultaneously
- * requires carefully arranging parameters, especially for light states

$$m_S = 55 \text{ GeV}, \ \eta_{KS} = -0.3,$$

 $\eta_S = 0.003, \ (\text{BR(inv}) = 1.9\%)$

* experimentally constrainable over a wide range of parameters

Kinetically resurrecting the Higgs portal: astrophysics

- * can satisfy direct detection and relic abundance simultaneously
- * requires carefully arranging parameters, especially for light states

$$m_S = 55 \text{ GeV}, \ \eta_{KS} = -0.3,$$

 $\eta_S = 0.003, \ (\text{BR(inv}) = 1.9\%)$

* experimentally constrainable over a wide range of parameters

... eyes are turning to CEPC - yet another huge opportunity for discovery-led research

* We know that new physics is there!

* We know that new physics is there!

* the weak scale, or even collider-based particle physics, might not reveal it...

* We know that new physics is there!

* the weak scale, or even collider-based particle physics, might not reveal it...

[many talks at this workshop!]

* ...interpretation of reports of the dearth of new physics is greatly exaggerated!

- * We know that new physics is there!
- * the weak scale, or even collider-based particle physics, might not reveal it...

[many talks at this workshop!]

* ...interpretation of reports of the dearth of new physics is greatly exaggerated!

* there is mounting theoretical evidence that a precision lepton (or high-energy proton) collider <u>will</u> signpost something more profound

- * We know that new physics is there!
- * the weak scale, or even collider-based particle physics, might not reveal it...

[many talks at this workshop!]

* ...interpretation of reports of the dearth of new physics is greatly exaggerated!

- * there is mounting theoretical evidence that a precision lepton (or high-energy proton) collider <u>will</u> signpost something more profound
- * ...this might still happen towards the HL-LHC phase!

...difficult with EFT alone, but additional UV degrees of freedom can drastically change this expectation....