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interested in studying the physics of a strongly coupled conformal sector
that is present during the early universe inflationary epoch (connection
with some interesting BSM scenarios)

Spectral features in the early universe carry high-energy fingerprints.

The primordial power spectrum, in particular, offers an opportunity to
probe energy scales that may be forever out of reach of terrestrial
experiments due to the extremely high energy scales relevant during an
early universe inflationary epoch

We can consider, for example, a CFT operator O with scaling dimension A,
and ask what sort of contribution it gives to the power spectrum as a
function of its boundary conditions and A.

We can utilize the AdS/CFT dictionary, and study the quantum fluctuations
of a 5D scalar field in AdS-dS



Elevator Pitch

The spectrum of a scalar operator in a large N CFT in an inflationary background is characterized
by a gapped continuum, with the gap set by the Hubble rate of inflation.

In this work, we investigate the non-Gaussian signatures in the CMB bispectrum caused by the
interaction of such an operator with the inflaton using Holographic principles.
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Holography

Hierarchy problem: Large hierarchy of scales in the standard model (Mg, ~103GeV,
Mp;~101°GeV); Smallness of Higgs mass (126 GeV)

Randall-Sundrum models- Elegant geometric solution Spontaneously broken CFT on boundary
ds? = e 240 dx2 — dy?

* A(y) = ky = pure AdS; k is the inverse-curvature

* Goldberger-Wise: Size of extra dimension stabilized by scalar

AdS
$1/2;

gaining a (¢)(y), deforming AdS geometry

*  Spectrum- discrete tower of KK modes with m ~ f

« AdS/CFT: 5D gravity <> 4D conformal gauge theory.
e RS1 and RS2 models as duals of large-N CFTs.

e Conformal symmetry breaking is essential for phenomenology.



Inflation

Epoch of dark energy domination leading to exponential
expansion of the universe for ~ 60 efolds

¢ Inflation solves the flatness, homogenous & isotropy problems,
* Curvature and inhomogeneities get stretched away

* Quantum fluctuations of (¢, g, ---) get stretched,
imprinted on superhorizon scales, and reenter horizon to
seed fluctuations of CMB and large scale structure

formation

* Fluctuations are primordial, approximately scale-invariant, and

Gaussian

Non-Gaussianities and beyond the power spectrum?
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e Inflaton localized on UV brane.

« Bulk scalar coupled to inflaton field.

o AdS-dS geometry: Hubble scale introduces IR cutoff.



Our Model of Inflation and Spectral Density

{ { {
d ap .
v bo

: Inflaton on the brane _ .
((l)' Bulk scalar field Lap = Ling + Lerr + Z 91,OinfOcrr
. ' i’j
¢o: background field

Coupling term: A¢h(V{)?
m: Bulk scalar mass

v= V4 + m?2: Eff mass of bulk scalar

mg: Brane mass




Our Model of Inflation and Spectral Density

H

ds? = e 2AW) (12 — e2Ht 52 _ g2 -A(w) —
( ) € k sinh Hw
AdS
Late Time $1/2
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curvature ER¢p? can shift it to H E + 12¢



5D inflationary set-up

L= £1nf + *CCFT + Z gij OlnfOCFT

1]
5D Einstein-Hilbert action on a space with one brane, and a scalar niela action on UV brane:

1 1
S =— /d5x\/§[A+ ﬁR} +/d4a:\/go [5(&0)2 = /\(4,0)] A= —5
. . OAp)
o+3Hp+ oo 0.

FLRW equation on the UV brane:

2 _ 2 P P K* H? ~ E—)\z(go) — k2.
H +2H —36)\ (p )(1 —/\(cp))(1+—2)\(<p))+ 6A. 36
5D metric:
1 dz?
2 2 2Ht 32
ds” = (kz)? (dt —edzT” — Gz(z)> G(z) =V1+ H222

The metric has a singularity at z — o, corresponding to a horizon, and the length of the extra dimension is

S| k 2%k
L = —~ dz=Fktsinh ' = ~ k11
//kaGz sin j% ogH

The finite size of the observable universe, H™!, acts as an infrared cutoff for the geometry



Continuum 1n Inflationary 5D geometry ll
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Continuum 1n Inflationary 5D geometry

- Switch to a convenient conformal coordinate:

ds? = e 24W) [dt2 — et _ dwz], with e
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Continuum 1n Inflationary 5D geometry

- Switch to a convenient conformal coordinate:
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Correlation functions and the Spectral Density
(From AdS/CFT)
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describes two CFT’s, with each of them associated with a different choice of
boundary action for the scalar field
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Correlation functions and the Spectral Density
(From AdS/CFT)
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Correlation functions and the Spectral Density
(From AdS/CFT)
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- Emergence of Particle:

As the theory transitions between the usual IR scaling, A = A,, and Agy=v

there is typically a sharp particle-like feature in the spectral density separating the two
regions of distinct scalings



UV/IR localized light mode = dpm?

Light mode: discrete mode below the gap

|
\\d)

v > 1, UV localized, exist when H=0
w2 =w-1) (mg —2(2=v)) + 22 - V)H? + O(H*)
* Tune brane mass m3 ~ 2(2 — v)

* CFT language: Fundamental bound state in the spectrum
mixing with the CFT states; CFT deformation by H
backreacts to modify the mass of the particle eigenstate

Quasiparticles



UV/IR localized light mode R dm?

Light mode: discrete mode below the gap

| b
\ P
v > 1, UV localized, exist when H=0 v < 1, IR localized, not exist when H=0
w=w-1) (mg - 22 - v)) +2(2 —=v)H? + O(H?) #? = UV misune + IR piece (H) |
* Tune brane mass m3 ~ 2(2 — v) * Analogous to the horizon localized solutioinfs in

* CFT language: Fundamental bound state in the spectrum Schwarzchild geometries for light scalar ﬁelds

mixing with the CFT states; CFT deformation by H * CFT language: Mostly composite modes of the near
backreacts to modify the mass of the particle eigenstate conformal dynamlcs They only exist during the :
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Quasiparticles Cosmological Quasiparticles:



Anatomy of Spectral density and Scaling
dimension
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UV brane localized

scalar inflaton

Cosmological Collider Physics 1. ) = o0+
=
Higher energy physics s Higher energy collider s Higher cost of money A ’

What about nature’s cosmological collider?

Primordial quantum fluctuations(fields interact with inflatons) === Non-Gaussianity from CMB bispectrum(fnl)
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Bispectrum /gl\ 4
Goal: To find the bispectrum due to an interaction of the inflaton

and a massive scalar field of the form [ (V¢)?c ) N
6]

Currently, let us focus on the non-local contributions in position space, i.e., terms that are non-analytic in k
: (nn )2 nn A
(B 0D$_x()) > L~ P (=i)? e (22

To find the bispectrum, we find the 4-point correlator and set one of the legs to the background

no2*A”
+Lk n ’ d?]' +ik3am '
Iy = (+i (-I-L) 12 _mn —yer <§I(n)0_§l(n )>_+_i

Fluctuations of the inflaton ¢ (t, x) = d)(,(t) + &(t, x) can be related to the curvature fluctuation

(= —Ef
5 <€z : <z> M2 m (ks\2 - ks \"
_> 1> k2> ks _ _EMp k3 N L O R Mt
fu =3 N coshzny<k1) x4 <4k1) AW (4k1) ]

) 5.8

k3 -0



Results of non-Gaussianitv
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Small Bulk Mass: m?=0 L>M0 with [0]-4
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values of UV brane mistunes, . We also show some of the shape functions, which exhibit
clear oscillatory behavior when there is a particle slightly above the critical mass, 3/2H.
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Small Bulk Mass: m2=-4 L>1070 with[0]~2 B =-A2

V= 0 0= 2(V —)\.)
-can lead to an IR localized state that is near to the horizon, producing a “cosmological quasiparticle”
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Conclusions and Outlook

* We considered a simple model of inflation in a holographic setup and found the
spectrum of a scalar operator in the large N CFT- a gapped continuum

* We find a UV localized light mode when the UV boundary conditions are somewhat
tuned

* We also find a normalizable transient cosmological IR localized light mode when
v < 1 localized, that tracks the gap of the spectral density without fine-tuning

* We find a novel scaline dimension in the UV whenv > 1-

* The non-analytic particle-like feature can rise above the continuum contributions, giving the
“smoking gun” oscillatory features in the shape function for Fy;

* The continuum seems to generate non-Gaussian features that are detectable in future
cosmological experiments!

* An extra coupling term éR¢p? of curvature and scalar field can shift the gap



Thank you!



