Probing CP violation for electroweak baryogenesis in 2HDM

Yushi Mura (KEK)

JHEP 07 (2025) 236, arXiv: 2504.07705 [hep-ph]

Collaborators: Masashi Aiko, Motoi Endo, Shinya Kanemura

JHEP 10 (2024) 041, arXiv: 2408.06863 [hep-ph] Collaborators: Shinya Kanemura

The 5th AEI International Workshop, Durham, IPPP 2025/10/01

Introduction

- SM was established by the Higgs discovery in 2012. ATLAS, CMS (2012)
- Some remaining problems e.g., baryon asymmetry of the Universe (BAU) $\eta_B^{obs} = \frac{n_B n_{\bar{B}}}{s} \simeq 8 \times 10^{-11}$
- Sakharov three conditions for baryon asymmetry Sakharov (1967)
 - ① Baryon # violation
 - ② C and CP violation
 - ③ Departure from thermal equilibrium
- A promising scenario for baryogenesis: Electroweak baryogenesis
 - Sphaleron process
 - 2 EW interaction with CP phase
 - ③ EW first order phase transition

Kuzmin, Rubakov and Shaposhnikov (1985)

Electroweak baryogenesis

• Expanding bubble walls are created at first order PT. Coleman, Callan and Coleman (1977) and many works

First order PT is realized by tunneling process (vacuum decay).

 Non-equilibrium sphaleron process around the bubble wall

Outside : baryon number violated Inside : baryon number conserved

$$\Gamma_{\rm sph}^{\rm brk} \propto e^{-v/T}$$
 Moore (1999)

 Generated baryon number is conserved inside the bubble.

 $\Gamma^{\mathrm{brk}}_{\mathrm{sph}}(T_n) < H(T_n) \Longrightarrow v_n/T_n \gtrsim 1 \ o \mathrm{Strongly} \ \mathrm{first} \ \mathrm{order} \ \mathrm{PT}$

Is EWBG possible in the SM?

Difficulties in the Standard Model

· SM cannot realize strongly first order EWPT.

$$V(\langle \phi \rangle, T) = \frac{1}{2} m_T^2 \langle \phi \rangle^2 - ET \langle \phi \rangle^3 + \frac{\lambda}{4} \langle \phi \rangle^4 + \cdots \qquad E \simeq \frac{1}{4\pi v^3} (2m_W^3 + m_Z^3)$$

$$\frac{v_n}{T_n} \sim \frac{v_c}{T_c} \simeq \frac{2E}{\lambda} = \frac{4Ev^2}{m_t^2} \gtrsim 1$$
 -> $m_h \lesssim \sqrt{4Ev^2} \simeq 48 \text{ GeV}$ Shaposhnikov (1987) Dine et al. (1992), (1992)

Crossover like for $m_h \gtrsim 60$ GeV (lattice results)

Kajantie et al. (1996); D'Onofrio and Rummukainen (2016);

SM Jarlskog invariant (from CKM matrix)

$$J_{CP} = \text{Im}[V_{ud}V_{us}^*V_{cs}V_{cs}^*] = 3.12 \times 10^{-5}$$
 PDG (2024)

$$\eta_B < O(10^{-26})$$
 Gavela et al. (1994);
Huet and Sather (1995);

CPV and first order EWPT in 2HDM

EWPT can be changed by new physics effects.

e.g.) Two Higgs doublet model (2HDM)

$$\mathcal{L} \sim -\lambda \phi_{\text{SM}}^{\dagger} \phi_{\text{SM}} \phi^{\dagger} \phi \implies E \simeq \frac{1}{4\pi v^3} (2m_W^3 + m_Z^3 + (\lambda v^2)^{3/2})$$

Funakubo et al. (1994); Davies et al. (1994); Cline and Lemieux (1997) and more

New CP violation in new physics

e.g.) CPV in 2HDM (SU(2) doublets: Φ_1 and Φ_2)

- \cdot Relative phase b/w Φ_1 and Φ_2
- New interaction b/w Φ_2 and SM fermions

Progress of Theoretical Physics, Vol. 49, No. 2, February 1973

CP-Violation in the Renormalizable Theory of Weak Interaction

Makoto KOBAYASHI and Toshihide MASKAWA

Department of Physics, Kyoto University, Kyoto

(Received September 1, 1972)

Constraints and testability

New physics effects making EWPT first order

e.g.) Triple Higgs coupling

Kanemura, Okada and Senaha (2005), and more

$$\frac{\Delta \lambda_{hhh}}{\lambda_{hhh}}$$
 ~600%

CMS (2022), ATLAS (2023), de Blas et al. (2020)

CP violating observables as a probe of EWBG

Electric dipole moments

Relation b/w EWBG and EDM

Aiko, Endo, Kanemura and YM, JHEP 07 (2025) 236

EDMs	Current bounds	Expected limits
Electron	$4.1 \times 10^{-30} e \text{ cm}$ JILA (2023)	$O(10^{-33})~e~{ m cm}$ Vutha, et al. (2018)
Neutron	$1.8 \times 10^{-26} \ e \ { m cm}$ Abel, et al. (2020)	$O(10^{-28})~e~{ m cm}$ nEDM (2019)
Proton	$2.1 \times 10^{-25} e \text{ cm}$ Sahoo (2017)	$O(10^{-29})~e~{ m cm}$ Alarcon, et al. (2022)

• Direct CP violation in H^{\pm} decays via loop-induced $H^{\pm}W^{+}Z$ vertex

Probe of CPV in the Higgs sector Kanemura and YM, JHEP 10 (2024) 041

EDM predicted in 2HDM

Two regimes to avoid FCNC

Discrete Z2 symmetry: $\Phi_2 \rightarrow -\Phi_2$

	Softly broken Z2 2HDM	General 2HDM	
FCNC Yukawa	Forbidden	Needs to be small (e.g. MFV)	
# of new CP phase	1	Many (more than 10)	
eEDM to explain BAU	<i>0</i> (10 ^{−28}) <i>e</i> cm	Depends on Yukawa structure	

FCNC Yukawa

Fromme et al. (2006); Dorsch et al. (2017); Basler et al. (2021), and more

Fuyuto, Hou, and Senaha (2019); Enomoto, Kanemura and YM, JHEP 01 (2022) 104, Enomoto, Kanemura and YM, JHEP 09 (2022) 121, and more

What is the leading contributions for EDM?

Fuyuto, Hou and Senaha (2019); Kanemura Kubota and Yagyu (2020); and more

O : couplings b/w electron and additional Higgs

However, this CPV coupling is not important for BAU (Why? -> see next)

Top transport scenario

• CPV force acting on top and anti-top $\propto y_t$

Cline, Joyce, and Kainulainen (2000); Fromme and Huber (2007); and more

Which EDMs constrain this scenario in g2HDM, and how?

 $n_R - n_{\bar{R}} \neq 0$

General two Higgs doublet model

Most general potential

Higgs basis
$$\mathbf{\Phi}_1 = \begin{pmatrix} G^\pm \\ \frac{1}{\sqrt{2}}(v+h_1+iG^0) \end{pmatrix} \; \mathbf{\Phi}_2 = \begin{pmatrix} H^\pm \\ \frac{1}{\sqrt{2}}(h_2+ih_3) \end{pmatrix}$$

$$V = -\mu_1^2 \mathbf{\Phi}_1^{\dagger} \mathbf{\Phi}_1 + M^2 \mathbf{\Phi}_2^{\dagger} \mathbf{\Phi}_2 - \left(\mu_3^2 \mathbf{\Phi}_1^{\dagger} \mathbf{\Phi}_2 + \text{h. c.}\right)$$

$$+ \frac{1}{2} \lambda_1 \left(\mathbf{\Phi}_1^{\dagger} \mathbf{\Phi}_1\right)^2 + \frac{1}{2} \lambda_2 \left(\mathbf{\Phi}_2^{\dagger} \mathbf{\Phi}_2\right)^2 + \lambda_3 \left(\mathbf{\Phi}_1^{\dagger} \mathbf{\Phi}_1\right) \left(\mathbf{\Phi}_2^{\dagger} \mathbf{\Phi}_2\right) + \lambda_4 \left(\mathbf{\Phi}_1^{\dagger} \mathbf{\Phi}_2\right) \left(\mathbf{\Phi}_2^{\dagger} \mathbf{\Phi}_1\right)$$

$$+ \left\{ \left(\frac{1}{2} \lambda_5 \mathbf{\Phi}_1^{\dagger} \mathbf{\Phi}_2 + \lambda_6 \mathbf{\Phi}_1^{\dagger} \mathbf{\Phi}_1 + \lambda_7 \mathbf{\Phi}_2^{\dagger} \mathbf{\Phi}_2\right) \mathbf{\Phi}_1^{\dagger} \mathbf{\Phi}_2 + \text{h. c.} \right\} \qquad (\mu_3^2, \lambda_5, \lambda_6, \lambda_7 \in \mathbb{C})$$

Most general Yukawa sector

$$\mathcal{L}_{Y} = -\sum_{k=1,2} \left(\overline{Q_{L}} Y_{k,u}^{\dagger} \widetilde{\mathbf{\Phi}}_{k} u_{R} + \overline{Q_{L}} Y_{k,d} \mathbf{\Phi}_{k} d_{R} + \overline{L_{L}} Y_{k,l} \mathbf{\Phi}_{k} e_{R} + \text{h. c.} \right)$$

$$Y_{1,u} = \text{diag}(y_{u}, y_{c}, y_{t}) \qquad Y_{1,d} = \text{diag}(y_{d}, y_{s}, y_{b}) \qquad Y_{1,l} = \text{diag}(y_{e}, y_{\mu}, y_{\tau})$$

Y₂ is general complex matrix

e.g.) Up type
$$Y_{2,u} = \begin{pmatrix} \rho_{uu} & \rho_{cu} & \rho_{tu} \\ \rho_{uc} & \rho_{cc} & \rho_{tc} \\ \rho_{ut} & \rho_{ct} & \rho_{tt} \end{pmatrix}$$

General two Higgs doublet model

Stationary conditions and mass spectra

$$\frac{\partial V}{\partial h_i} = 0 \iff \mu_1^2 = \frac{1}{2}\lambda_1 v^2, \ \mu_3^2 = \frac{1}{2}\lambda_6 v^2$$

$$\frac{\partial^2 V}{\partial h_i \partial h_j} = \mathcal{M}_{ij}^n = \begin{pmatrix} \lambda_1 v^2 & \operatorname{Re}[\lambda_6] v^2 & -\operatorname{Im}[\lambda_6] v^2 \\ \operatorname{Re}[\lambda_6] v^2 & M^2 + \frac{1}{2}(\lambda_3 + \lambda_4 + \lambda_5) v^2 & -\frac{1}{2}\operatorname{Im}[\lambda_5] \\ -\operatorname{Im}[\lambda_6] v^2 & -\frac{1}{2}\operatorname{Im}[\lambda_5] & M^2 + \frac{1}{2}(\lambda_3 + \lambda_4 - \lambda_5) v^2 \end{pmatrix}$$

 $m_{H^{\pm}}^2 = M^2 + \frac{1}{2}\lambda_3 v^2$

Mass eigenstate for neutral scalar bosons

125 GeV Higgs

Orthogonal matrix
$$R$$

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = R \begin{pmatrix} H_1 \\ H_2 \\ H_3 \end{pmatrix}, \qquad R^T \mathcal{M}^n R = \operatorname{diag}(m_{H_1}, m_{H_2}, m_{H_3})$$

Rephasing invariants in the model $\Phi_2 \rightarrow e^{i\theta}\Phi_2$

$$\Phi_2 \rightarrow e^{i\theta}\Phi_2$$

Potential: $\text{Im}[\lambda_5^* \lambda_6^2]$, $\text{Im}[\lambda_5^* \lambda_7^2]$, $\text{Im}[\lambda_6^* \lambda_7]$

Yukawa: Im $[\lambda_5 \rho_{tt}^2]$, Im $[\lambda_6 \rho_{tt}]$, Im $[\lambda_7 \rho_{tt}]$ (and other ρ_{ij} related invariants)

Essential CP violation

 Discovered 125GeV Higgs is SM like. ATLAS, Nature (2022); CMS, Nature (2022);

e.g.)
$$H_1 ZZ$$
 coupling $\kappa_Z \simeq 1 \quad |\lambda_6| \ll 1$

- Im[$\lambda_5^* \lambda_7^2$], Im[$\lambda_5 \rho_{tt}^2$], Im[$\lambda_7 \rho_{tt}$]
- CPV force as a function of VEVs φ

$$S_{\text{CPV}} \propto \frac{y_t |\rho_{tt}|}{2} \{ (\varphi_1 \varphi_2' - \varphi_2 \varphi_1') \sin(\arg [\rho_{tt}]) + (\varphi_3 \varphi_1' - \varphi_1 \varphi_3') \cos(\arg [\rho_{tt}]) \}$$

- If $\lambda_6 \simeq \lambda_7 \simeq 0$, tree level potential approximately has \mathbb{Z}_2 symmetry $(\Phi_2 \to -\Phi_2)$. \Rightarrow VEV of Φ_2 is suppressed, $\varphi_2, \varphi_3 \ll 1$.
- For sufficient BAU, $Im[\lambda_7 \rho_{tt}]$ is necessary.
- Minimal setup $\rho_{ij}=0$ (except for ρ_{tt}) and $\lambda_4=\lambda_5=\lambda_6=0$ ($\lambda_4=\lambda_5$ is for T parameter)
 - $m_{H_2}=m_{H_3}=m_{H^\pm}\equiv m_\Phi$ One available CP phase: ${
 m arg}[\lambda_7
 ho_{tt}]$

EDMs in the minimal setup

 Top chromo EDM induces Weinberg op. and light fermion EDMs by RGE running.

At 1 loop level

With the minimal setup, 2 loop diagrams are leading.

$$\propto \text{Im}[\lambda_7 \rho_{tt}]$$

At the red point, $\lambda_7 = e^{i\pi/4}, -\mu_2^2 = 30^2 \text{ GeV}^2$ are taken.

 $\rho_{\rm tt}$ =0.1 $e^{{\rm i}\pi/4}$, $m_{H^{\pm}}$ = m_{H_3} =350 GeV

Correlation b/w EDMs and BAU

Scanning parameter space

$$m_{\Phi} = [200,500] \text{ GeV}, \mu_2^2 = [-m_{\Phi}^2, 0], |\rho_{tt}| = [0,0.5]$$

 $|\lambda_7| = [0,1], \lambda_2 = [0,1], \arg[\lambda_7 \rho_{tt}] = -\pi/2, v_w = [0.1,1/\sqrt{3}]$

Neutron and proton EDMs

Correlation b/w EDMs and BAU

Electron EDM induced by top EDM

• Dipole operators for top are induced below $\Lambda \simeq m_\Phi.$

• Matching to d_e at $\mu \sim m_Z$, where top, Higgs, W and Z are decoupled.

Cirigliano et al. (2016) Fuyuto and Ramsey-Musolf (2017)

• Small effects by other couplings (e.g. ρ_{ee}) can change EDMs, but not η_B very much.

$H^{\pm}W^{+}Z$ vertex

• Custodial symmetry in the SM $\mathbb{M}_{SM} = (\widetilde{\Phi}, \Phi) = \begin{pmatrix} \phi^{0*} & \phi^{+} \\ -\phi^{-} & \phi^{0} \end{pmatrix}$

$$\mathbb{M}_{SM} = (\widetilde{\Phi}, \Phi) = \begin{pmatrix} \phi^{0*} & \phi^{+} \\ -\phi^{-} & \phi^{0} \end{pmatrix}$$

$$\mathcal{L} = \text{Tr}[\left(D_{\mu} \mathbb{M}_{SM}\right)^{\dagger} \left(D^{\mu} \mathbb{M}_{SM}\right)] - V(\text{Tr}[\mathbb{M}_{SM}^{\dagger} \mathbb{M}_{SM}])$$

$$\mathbb{M}_{SM} \to L \mathbb{M}_{SM} R^{\dagger}$$

$$L \in SU(2)_L, R \in SU(2)_R$$

 $\mathbb{M}_{SM} \to L \mathbb{M}_{SM} R^{\dagger}$ $L \in SU(2)_L$, $R \in SU(2)_R$ L=R symmetry -> Custodial symmetry

Sikivie et al. (1980)

- \cdot ρ parameter (relation b/w W and Z bosons mass) $\rho = m_W^2/m_Z^2 c_W^2 = 1$ (Tree level)
- An important vertex : $H^{\pm}W^{\mp}Z$ vertex Grifols and Mendez (1980)
 - · WZ system (two bosons system) ~ $3 \times 3 = \mathbf{1}_S + \mathbf{3}_A + \mathbf{5}_S$

ho=1 models	Scalar reps. (L,R)	Quintuplet H ₅ [±]	Triplet H_3^{\pm}	$H^{\pm}W^{\mp}Z$ vertex
Georgi-Machacek model	(3,3)	V	✓	$H_5^{\pm}W^{\mp}Z$ (tree-level)
2HDM	(2,2)*2	×	>	$H_3^{\pm}W^{\mp}Z$ (loop-induced)

- Relation to CP violation (2HDM) Pomarol and Vega (1994)
 - To have CP phase in the potential, the custodial symmetry must be broken.

Direct CPV in H^{\pm} decays

Interference of scalar and fermion contributions (most general 2HDM)

Kanemura and YM, JHEP 10 (2024) 041

$$\Delta \equiv \Gamma(H^+ \to W^+ Z) - \Gamma(H^- \to W^- Z)$$

$$\Delta \simeq \rho_{tt}^R Z_7^I (m_{H^{\pm}}^2 - m_{H_2}^2) \times f_3 \operatorname{Im}[f_1^*] + \rho_{tt}^I Z_7^R (m_{H^{\pm}}^2 - m_{H_3}^2) \times f_2 \operatorname{Im}[f_1]$$

 f_1 : loop function in fermion loop f_2 : loop function in scalar loop

 Can we test direct CPV in future colliders?

Humphrey, Kanemura and YM, work in progress

Current bound

ATLAS, Eur. Phys. J. C (2023) 83:633; CMS, Eur. Phys. J. C 81 (2021) 8, 723

 $\sigma_{WZjj} \lesssim 80 \text{ fb at } m_{H^{\pm}} = 300 \text{ GeV}$

Tree level HWZ: GM model

Georgi and Machacek (1985); Chanowitz and Golden (1985);

Summary

New physics is necessary for EWBG

New source of CPV can be introduced in 2HDM.

Minimal setup for EWBG in general 2HDM

- EDMs and BAU correlated by $Im[\lambda_7 \rho_{tt}]$
- It is viable under current bounds but would be tested in the future.

• $H^{\pm} \rightarrow W^{\pm}Z$ decay in general 2HDM

- We calculated $H^{\pm} \rightarrow W^{\pm}Z$ with the most general setup in 2HDM.
- We find the decay asymmetry is sensitive to the CP phases.

Back up

WKB method

Cline, Joyce, and Kainulainen (2000); Fromme and Huber (2007); and more

Transport equation for chemical potential

$$C_1 \; \mu''(z) + C_2 \; \mu'(z) + C_3 \; \mu(z) = S_{\rm CPV}$$
 where, $\mu(z) = \mu_\psi - \mu_{\overline{\psi}}$

• By solving Dirac eq. for ψ with WKB approximation, we have

$$S_{\text{CPV}} = C_4 \left(m_{\psi}^2 \theta_{\psi}' \right)' + C_5 m_{\psi}^2 \theta_{\psi}' \left(m_{\psi}^2 \right)'.$$
 C_i are functions of z, T, m , and v_w .

• Final BAU:
$$\eta_B \simeq ({\rm const.}) \; \Gamma_{\rm sph}^{\rm sym} \int_0^\infty dz \; \mu_{B_L} e^{-({\rm const.}) \; \Gamma_{\rm sph}^{\rm sym} \; z}$$
 washout

- Comments on VEV-Insertion-Approximation (VIA) method Riotto (1996) (1998);
 - · BAU evaluated by VIA method tends to be larger than that by WKB method.
 - Main difference: CPV source is derived by SK formalism.

Cline and Laurent (2021); Basler (2023); and more

· Long-term used CPV source (considered as LO) vanishes by correct resummation.

Electroweak phase transition

• Several fates of the vacuum (We used CosmoTransitions) Wainwright, Comput. Phys. Commun. 183 (2011)

- (a) Pink filled circle: The phase transition from phase A to phase B is first order, B is the vacuum at T = 0, B is the electroweak vacuum, and the VEV in A is below than 1 GeV.
- (b) Gray +: The phase transition $A \to B$ is first order, B is the vacuum at T = 0, B is the electroweak vacuum, and the VEV in A is larger than 1 GeV.
- (c) Gray \times : The phase transition $A \to B$ is first order, B is the vacuum at T = 0, and B is not the electroweak vacuum.
- (d) Black dot: The phase transition $A \to B$ is first order, and B is *not* the vacuum at T = 0.
- (e) Blue diamond: The phase transition $A \to B$ is second order.
- (f) Gray box: No phase transition is returned, including the case of $\Gamma/H^4 < 1$.

Example of unrealistic phase transition

Electron EDM

• Effective Lagrangian
$$\mathcal{L}_{\mathrm{eff}} = -\frac{1}{\Lambda^2} \Big(\frac{g'}{\sqrt{2}} C_{tB} \overline{Q_L} \sigma^{\mu\nu} t_R \tilde{\Phi}_1 B_{\mu\nu} + \frac{g}{\sqrt{2}} C_{tW} \overline{Q_L} \sigma^{\mu\nu} t_R \tau^a \tilde{\Phi}_1 W^a_{\mu\nu} + \mathrm{h.c.} \Big),$$

- Electron EDM induced by top EDM

• Matching at
$$\Lambda$$
 $d_t^{B_\mu}=rac{g_1v}{\Lambda^2}{
m Im}[C_{tB}],~~d_t^{W_\mu^3}=rac{g_2v}{\Lambda^2}{
m Im}[C_{tW}].$

$$d_e = -rac{e}{2v} \Big(rac{v}{\Lambda}\Big)^2 \Big(\lograc{\Lambda}{\mu}\Big)^2 igg[(A_e-D_e) ext{Im}[C_{tB}] + (B_e-E_e) ext{Im}[C_{tW}]igg],$$

Fuyuto and Ramsey-Musolf (2017)

Correlation among EDMs

Strong correlation among EDMs (dashed: future prospect bounds)

• All of CPV quantities are correlated by $Im[\lambda_7 \rho_{tt}]$. \Rightarrow Characteristic prediction of our scenario

Renormalization

UV divergence in mixing-self-energy diagrams

Effective potential renormalization

- Other renormalization schemes? e.g.) $\overline{\rm MS}$ scheme $d_t^{\overline{\rm MS},(2)} = d_t^{{\rm EP},(2)} + \Delta d_t^{(2)}$ (?)
 - Scheme conversion $\lambda_6^{\overline{\text{MS}},(1)} = \lambda_6^{\text{EP},(1)} + \Delta \lambda_6^{(1)}$ $\Rightarrow \lambda_6^{\text{EP},(1)} = 0$ does not mean $\lambda_6^{\overline{\text{MS}},(1)} = 0$.
 - · Finally, $d_t^{\overline{\rm MS},(2)} = d_t^{{\rm EP},(2)} + \Delta d_t^{(2)} \Delta d_t^{(2)} + O(\hbar^3)$ from one-loop diagram

Scheme dependence

Renormalization scheme for effective potential (EP scheme)

Scheme difference (MS bar and EP scheme)

$$\begin{split} \tilde{d}_t^{(2),\overline{\rm MS}} &= \tilde{d}_t^{(2)} + \Delta \tilde{d}_t^{(2),\overline{\rm MS}}, \\ \Delta \tilde{d}_t^{(2),\overline{\rm MS}} &= \frac{{\rm Im}[\lambda_7 \rho_{tt}]}{\sqrt{2}} \frac{3\lambda_3 v}{(16\pi^2)^2} \frac{2m_t^2}{m_\Phi^2 - m_{H_1}^2} \Big(C_{11}[\Phi,t,t] - C_{11}[H_1,t,t] \Big) \log \frac{\mu^2}{m_\Phi^2} \bigg|_{\overline{\rm MS}}, \end{split}$$

• Scheme conversion and one-loop EDM t = t

$$\lambda_6^{\overline{
m MS}}=\,\lambda_6-rac{3}{16\pi^2}\lambda_3\lambda_7\lograc{\mu^2}{m_\Phi^2}+\dots\,igg|_{
m EP}$$
 cau

$$\lambda_6^{\overline{\rm MS}} = \lambda_6 - \frac{3}{16\pi^2} \lambda_3 \lambda_7 \log \frac{\mu^2}{m_\Phi^2} + \dots \bigg|_{\rm FP} \ {\sf causes} \ \ \tilde{d}_t^{(1),\overline{\rm MS}} = \frac{{\rm Im}[\lambda_6 \rho_{tt}]}{\sqrt{2}} \frac{v}{16\pi^2} \frac{2m_t^2}{m_\Phi^2 - m_{H_1}^2} \Big(C_{11}[\Phi,t,t] - C_{11}[H_1,t,t] \Big) \bigg|_{\overline{\rm MS}}$$

• Consequently, we have
$$\left\| \tilde{d}_t^{(1),\overline{ ext{MS}}} + \tilde{d}_t^{(2),\overline{ ext{MS}}} = \left\| \tilde{d}_t^{(2)} + \mathcal{O}(\hbar^3) \right\|_{\text{EP}}$$
 and there are no scale dependence.

Estimation of baryon asymmetry

Boltzmann equation with perturbations from thermal equilibrium

$$(\partial_t + \boldsymbol{v}_g \cdot \partial_{\boldsymbol{x}} + \boldsymbol{F} \cdot \partial_{\boldsymbol{p}}) f_i = C[f_i, f_j, \ldots]$$
 $f_i = \frac{1}{e^{\beta[\gamma_w(E_i + v_w p_z) - \mu_i]} \pm 1} + \delta f_i$

- Chemical potentials (particle – anti-particle)
- μ_{B_L} affects rate of $\Delta B \neq 0$ process Cline, Joyce and Kainulainen, JHEP 07 (2000) In plasma flame

$$\frac{\partial n_B}{\partial t} = \frac{3}{2} \Gamma_{\rm sph} \left(\frac{3\mu_{B_L}}{T} - \frac{A}{T^3} n_B \right)$$

Integrated in wall flame

$$\eta_B \equiv \frac{n_B - n_{\overline{B}}}{s} \\
= \frac{405\Gamma_{\rm sph}}{4\pi^2 v_w q_* T} \int_0^\infty dz \ \mu_{B_L} e^{-({\rm const.})\Gamma_{\rm sph} z}$$

CP violating bubble

"Semi classical force approach" (WKB method)

Cline, Joyce and Kainulainen, JHEP 07 (2000); Cline and Kainulainen Phys. Rev. D 101 (2020)

$$\left(i\partial_{\mu}\gamma^{\mu} - m(z)P_L - m^*(z)P_R\right)\psi = 0$$

$$v_g = \frac{p_z}{E} \pm (\partial_z \theta \text{ corrections})$$
 $F_z = -\frac{\partial_z |m^2|}{2E} \pm (\partial_z \theta \text{ corrections})$

WKB wave packet

$$m_{t}^{2} = \frac{1}{2} \Big(y_{t}^{2} \varphi_{1}^{2} + |\rho_{tt}|^{2} (\varphi_{2}^{2} + \varphi_{3}^{2}) + 2y_{t} |\rho_{tt}| \varphi_{1} (\varphi_{2} \cos \theta_{tt} + \varphi_{3} \sin \theta_{tt}) \Big),$$

$$\theta'_{t} = \frac{1}{2m_{t}^{2}} \left\{ y_{t} |\rho_{tt}| \Big((\varphi_{3} \varphi'_{1} - \varphi_{1} \varphi'_{3}) \cos \theta_{tt} + (\varphi_{1} \varphi'_{2} - \varphi_{2} \varphi'_{1}) \sin \theta_{tt} \Big) + |\rho_{tt}|^{2} (\varphi_{3} \varphi'_{2} - \varphi_{2} \varphi'_{3}) \right\}$$

$$+ \frac{1}{\varphi_{1}^{2} + \varphi_{2}^{2} + \varphi_{3}^{2}} (\varphi_{3} \varphi'_{2} - \varphi_{2} \varphi'_{3}), \tag{3.10}$$

T = 101.18

15 10

-10 -15

-20

-200

(Black lines: path of PT)

• Large φ_2, φ_3 during PT are needed to enhance BAU.

With Yukawa alignment

Enomoto, Kanemura and YM, JHEP 09 (2022) 121

$$\lambda_2 = 0.1, \ m_{\Phi} = 350 \text{ GeV}, \ M = 30 \text{ GeV}, \ v_w = 0.1,$$

$$\theta_u = \theta_d = [0, 2\pi), \ |\zeta_d| = |\zeta_e| = [0, 10], \ |\lambda_7| = [0.5, 1.0], \ \theta_7 = [0, 2\pi).$$

These points are allowed from various constraints.

Fermion loop contributions are proportional to $|\zeta_u||\zeta_e|\sin\delta_e$. $(\delta_e \equiv \theta_u - \theta_e)$

Many points are satisfied from eEDM data and they generate sufficient BAU.

Top-charm transport scenario

Kanemura and YM, JHEP 09 (2023) 153

$H^{\pm}W^{\mp}Z$ vertex

- Charged Higgs H^{\pm} are introduced in some classes of extended Higgs models.
- An important vertex : $H^{\pm}W^{\mp}Z$ vertex
 - Consequence of custodial symmetry violation in 2HDM
 - · At tree level

Georgi-Machacek model, etc

Georgi and Machacek (1985); Chanowitz and Golden (1985); Beyond tree level

Minimal Supersymmetric Standard Model CP conserving Two Higgs doublet model

Mendez and Pomarol (1991); Kanemura (2000); and more

• Even at one loop order, effects from $H^{\pm}W^{\mp}Z$ vertex are enhanced.

What is new?

Kanemura and YM, JHEP 10 (2024) 041

- Giving full formulae at one-loop level in the most general 2HDM
- As a probe of the CP violation in the general 2HDM

Testing CP violation

Kanemura and YM, JHEP 10 (2024) 041

Right: $\delta_{CP} \equiv \frac{-}{\Gamma(H^+ \to W^+ Z) + \Gamma(H^- \to W^- Z)}$ Left: $\Delta \equiv \Gamma(H^+ \rightarrow W^+ Z) - \Gamma(H^- \rightarrow W^- Z)$ m_{H_2} =500, $m_{H^{\pm}}$ =200, m_{H_3} - $m_{H^{\pm}}$ =10 [in GeV], ρ_{tt} =0.1 m_{H_2} =500, $m_{H^{\pm}}$ =200, m_{H_3} - $m_{H^{\pm}}$ =10 [in GeV], $\rho_{\rm tt}$ =0.1 3 $\Delta(H^{\pm}->WZ)\times10^5$ δ_{CP} 2 0.5 1 0.6 0.4 1.5 0.6 arg[Z₇] 0.5 0.2 0 -0.2-0.5-0.6 -1.50.5 0.5 0.0 1.0 1.5 2.0 0.0 1.0 1.5 2.0 $|Z_7|$ $|Z_7|$

• At $\delta_{CP} \simeq 0.6$, $\Gamma(H^- \to W^- Z) \simeq \Gamma(H^+ \to W^+ Z)/4$ is shown by definition

Decay rate for $H^{\pm} \rightarrow W^{\pm}Z$

• Non-zero Im $[Z_7]$ and $Z_4+Z_5 \propto m_{H_2}^2-m_{H^\pm}^2$ case

Branching ratio

Cf.) Mixing angle
$$H_1 = h_1 \cos \alpha_1 - h_2 \sin \alpha_1$$

$$H_2 = h_1 \sin \alpha_1 + h_2 \cos \alpha_1$$

- Branching ratio for $H^+ o XY$ ($ho_{ij}=0$ except for ho_{tt})
 - Custodial symmetry violation $\propto m_{H_2} m_{H^{\pm}}$
 - · For $m_{H^{\pm}} < m_{H_2}$, main modes are $H^{\pm} \rightarrow tb$, WZ, WH₁
 - If $m_{H^{\pm}} < m_W + m_{H_1}$, $Br(H^{\pm} \to W^{\pm}Z)$ can be efficiently large

$\delta_{\rm CP}$ as a function of Z_7 and ρ_{tt}

MS beta function and threshold correction

• Connecting \overline{MS} parameters and observables $\lambda^0 = \lambda^{\overline{MS}} - \delta \lambda^{\overline{MS}} = \lambda_{OS} - \delta \lambda_{OS}$

$$\lambda^{0} = \lambda^{\overline{\mathrm{MS}}} - \delta \lambda^{\overline{\mathrm{MS}}} = \lambda_{\mathrm{OS}} - \delta \lambda_{\mathrm{OS}}$$

Matching condition

$$\lambda^{\overline{\rm MS}}(\mu) = \lambda_{\rm OS} - \delta\lambda_{\rm OS} + \delta\lambda^{\overline{\rm MS}} = \lambda_{\rm OS} - \delta\lambda_{\rm OS} \Big|_{\rm fin} + \Delta\lambda$$
 Tree \bigsim 1 \loop \left(\loop \text{form}) \bigsim 2 \loop \left(\loop \text{form})

Using this relation, let $\lambda^{MS}(\mu = Q_m)$ match observables (Usually, $Q_m \simeq \text{mass}$)

$$Q$$
: Energy scale Q_m : Matching scale

Ex) Tree level matching condition $\lambda^{\overline{\rm MS}}(Q_m) = \lambda_{\rm OS}$ $\beta(\lambda, Q) = \beta_{IR}(\lambda) + \theta_{step}(Q/Q_m) \beta_{UV}(\lambda)$

- Less care has been taken in studies for EWBG
 - It suffers higher order threshold corrections
 - · In principle, we only know appropriate value of Q_m

 Physical scheme without threshold uncertainty will be introduced to evaluate perturbative region of EWBG models 34

Triviality bound

- Triviality bounds : Upper bound of the mass respect to $\Lambda_{4\pi}$
- Analysis in Inert doublet model

Discrepancy between WKB and VIA

Each method provides different results. Cline and Laurent (2021)

Quark (charm-top mixing) case

 v_w : wall velocity

 L_w : wall width

Lepton (tau) case

Discrepancy between WKB and VIA

WKB method

WKB wave packet

Boltzmann eq.

$$(\partial_t + \boldsymbol{v}_g \cdot \partial_{\boldsymbol{x}} + \boldsymbol{F} \cdot \partial_{\boldsymbol{p}}) f_i = C[f_i, f_j, \ldots]$$

$$v_g = \frac{p}{E} \pm \text{(from wall)}$$

 $F = \text{(from wall)} \pm \text{(correction)}$

Group velocity v_g and force F are derived from Dirac or Klein-Gordon equation.

• **VIA method** A. Riotto (1995), (1997), (1998)

Schwinger-Dyson eq.
$$-\Big(\partial_u^2+m^2\Big)i\Delta(u,v)=i\delta^4(u-v)+\int d^4w\;\Pi(u,w)i\Delta(w,v)$$
 Self energy contains CPV with VEV insertion approx.

Quantum diffusion eq.
$$\partial_{\mu}j^{\mu}=\partial_{t}n+\nabla\cdot\boldsymbol{j}=(Source)$$

$$oldsymbol{j} \simeq -D
abla n$$
 (Fick's low)

Usual VEV insertion approximation

Perturbation about space dependent off-diagonal mass

Self energy at 2nd order

$$\Pi_{LL}^{(2)}\supset$$

• CP violating source term in usual VIA $g(x,y) = m_{LB}^2(x) m_{RL}^2(y)$

$$g(x,y) = m_{LR}^2(x) m_{RL}^2(y)$$

$$S_{LL}^{(2)}(x) = \int d^4y \left(\text{Re}[g(x,y) + g(y,x)] \text{Re}[G_{RR}^{\leq}(x,y)G_{LL}^{>}(y,x) - G_{RR}^{>}(x,y)G_{LL}^{\leq}(y,x)] \right)$$

$$-\text{Im}[g(x,y) - g(y,x)] \text{Im}[G_{RR}^{\leq}(x,y)G_{LL}^{>}(y,x) - G_{RR}^{>}(x,y)G_{LL}^{\leq}(y,x)]$$

CP conserving part ⇒ relaxation term

CP violating part ⇒ source term

$$S_{LL}^{(2)}(x) \supset S_{CPV}^{(2)} = 2\operatorname{Im}[m_{LR}^2 \partial_{\mu} m_{RL}^2]$$

$$\times \int d^4 y \ (y - x)^{\mu} \operatorname{Im}[G_{RR}^{<}(x, y) G_{LL}^{>}(y, x) - G_{RR}^{>}(x, y) G_{LL}^{<}(y, x)]$$

with further approximation: $m_{IJ}^2(y)=m_{IJ}^2(x)+(x-y)^\mu\partial_\mu m_{IJ}^2(x)+O(\partial^2)$

KMS relation

Π ⇒ thermal self energy

 $G \Rightarrow$ Green functions obtained from constraint eq.

· In thermal equilibrium and single flavor system, Wightman functions and self energies satisfy

(bosonic case of Kubo-Martin-Schwinger relation)

- We assume self energies satisfy this relation and are diagonal even in two flavor system.
- At the 0th order in VIA (free for the background field), Green functions can be obtained from constraint eq. such as

$$G_{(0),IJ}^> = (n_I+1)\rho_{(0),I}\delta_{IJ}, \quad \text{(I,J is flavor indices)}$$

$$G_{(0),IJ}^< = n_I\rho_{(0),I}\delta_{IJ}, \quad \text{where,} \quad \begin{array}{c} \rho_{(0),I} = \frac{\gamma_I}{(k^2-m_I^2-\Pi^h)^2-\gamma_I^2/4}, \quad \gamma_I = -4ik_0\Gamma_I \\ \text{spectral function} \end{array}$$
 thermal width

Of course, we can find these 0th order Wightman functions satisfy KMS relation.

2nd order in VIA

Green function at 1st and 2nd order in VIA

$$G_{(1),IJ}^{ab} = c \sum_{c} G_{(0),II}^{ac} m_{IJ}^2 G_{(0),JJ}^{cb}, \qquad \text{(off diag.)} \qquad \underbrace{ \int_{c}^{L} \frac{1}{R} R}_{L} G_{(0),II}^{ab} m_{IJ}^2 G_{(0),JJ}^{cd} m_{JI}^2 G_{(0),II}^{db}. \qquad \underbrace{ \int_{c}^{R} \frac{1}{R} R}_{L} G_{(0),II}^{ab} m_{IJ}^2 G_{(0),II}^{cd}. \qquad \underbrace{ \int_{c}^{R} \frac{1}{R} R}_{L} G_{(0),II}^{ab} m_{IJ}^2 G_{(0),II}^{ab}. \qquad \underbrace{ \int_{c}^{R} \frac{1}{R} R}_{L} G_{(0),II}^2 m_{IJ}^2 G_{(0),II}$$

Source term, for example diagonal component, is

$$\overline{S}_{LL}^{(2)} = [\delta M^2, G_{(1)}^> + G_{(1)}^<]_{LL} + [M_d^2, G_{(2)}^> + G_{(2)}^<]_{LL} \qquad \text{(diag.) + (off diag.)}$$

$$+ [\Pi^> + \Pi^<, G_{(2)}^h]_{LL} + \left(\{\Pi^>, G_{(2)}^<\} - \{\Pi^<, G_{(2)}^>\} \right)_{LL}$$

$$= 0 \text{ (\circ both are diagonal)}$$

$$= 2|m_{LR}|^4 \rho_{(0),L} \rho_{(0),R}(n_L - n_R) - 2|m_{LR}|^4 \rho_{(0),L} \rho_{(0),R}(n_L - n_R) = 0.$$

The source term of right and off diagonal components also vanish.

Full order in VIA

We can solve constraint equations exactly at leading order in derivative expansion.

$$\begin{split} k^2 G^{\lambda} &= \frac{1}{2} \Big(\{ M^2, G^{\lambda} \} + \{ \Pi^{\lambda}, G^h \} + \frac{1}{2} \big([\Pi^>, G^<] - [\Pi^<, G^>] \big) \Big), \\ k^2 G^t &= 1 + \frac{1}{2} \Big(\{ M^2 + \Pi^t - \Pi^h, G^t \} - \Pi^< G^> - G^< \Pi^> \Big). \\ \text{Solution} \quad G^{\lambda}_{LL} &= \frac{\gamma_R \gamma_L}{\mathcal{D}_+ \mathcal{D}_- \rho_{(0),R}} \Big(g^{\lambda}_L + g^{\lambda}_R \frac{\rho_R}{\gamma_L} |m_{LR}|^4 \Big), \\ G^{\lambda}_{LR} &= \frac{m^2_{LR}}{\mathcal{D}_+ \mathcal{D}_-} \Big(\gamma_R g^{\lambda}_R (k^2 - m^2_L) + \gamma_L g^{\lambda}_L (k^2 - m^2_R) + \frac{1}{2} \gamma_R \gamma_L (g^{\lambda}_R - g^{\lambda}_L) \Big). \end{split}$$

- By substituting these into kinetic equation, we can find source term exactly vanishes: $\overline{S} = 0$.
- In conclusion, VIA source does not appear at the leading order in derivative expansion.

 $(\partial_x \ll k)$

Possibility

- Thermal corrections possibly provide off diagonal element of self energy.
- We have used e^{-i} \rightarrow 1, and next to leading order correction has not been calculated yet.
 - ⇒ Being key to solve discrepancy between WKB and VIA?