Precision Phenomenology for Hadronic Higgs Decays at Future Colliders

Matteo Marcoli

5th Asian-European-Institutes Workshop for BSM 02/10/2025

Work in collaboration with Simone Caletti, Elliot Fox, Aude Gehrmann-De Ridder, Thomas Gehrmann, Nigel Glover, Christian T. Preuss

Overview

Jet rates in hadronic Higgs decays

Event shapes in hadronic Higgs decays

Jet observables in e⁺e⁻→ZH

Summary and outlook

INTRODUCTION

Higgs boson: from discovery to precision

established at LHC

in next 1-2 years.

or after 2030

The precision Higgs physics era started right after its discovery:

- Higgs boson properties (mass, width, ...)
- Higgs boson interaction with other SM particles
- Higgs boson self interaction

[Slide from Gavin Salam]

Bottom:

- Observed (2019) and precisely measured at the LHC
- Crucial role of machine learning in b-jet tagging

Charm:

- Very promising recent results thanks to machine learning
- Potential for observation at the LHC in the near future

to reach of circular e+e-

colliders?

Higgs factories at future colliders

Future electron-positron colliders will operate as **Higgs factories**, enabling high-precision measurements of the Higgs boson properties and couplings.

FCC

Baseline physics programme at FCC-ee.

[Monni, d' Enterria FCC:QCD physics, ESPPU 2025-2026]

Run	Z	WW	ZH	${ m t} \overline{ m t}$	
\sqrt{s} (GeV)	88, 91, 94	157, 163	240	340–350	365
time (years)	4	2	3	1	4
\mathcal{L}_{int} (ab ⁻¹)	205	19.2	10.8	0.42	2.70
$e^+e^- \rightarrow Z, WW, ZH, t\bar{t}$					
$N_{\rm evts}$ (Z, W, H, top)	$6\times 10^{12}~\rm Z$	$2.4\times10^8~\mathrm{WW}$	$2.2 \times 10^6 \; \mathrm{ZH}$	$2 \times 10^6 \; \mathrm{t} \overline{\mathrm{t}}$	
$N_{\rm evts}$ (HFS decays)	4.2×10^{12}	1.1×10^8	1.2×10^6	0.9×10^{6}	
$N_{\rm partons}$ (HFS decays)	≥ 2	≥ 4	≥ 4	≥ 6	
$E_{\rm j}$ (max. jet scale probed)	$45\mathrm{GeV}$	$40\mathrm{GeV}$	$45,65\mathrm{GeV}$	$125\mathrm{GeV}$	
$e^+e^- \to Z^{(*)} \to q\overline{q}$					
σ	32.5 nb	40 pb	13.5 pb	$5.3~\mathrm{pb}$	
N_{evts} (HFS)	4.2×10^{12}	7.7×10^{8}	1.5×10^8	1.7×10^7	
$E_{\rm j}$ (max. jet scale probed)	$45\mathrm{GeV}$	$80\mathrm{GeV}$	$120\mathrm{GeV}$	$180{ m GeV}$	

CEPC

O(10⁶) clean Higgs boson production events: same ballpark of all events at LEP!

ILC

Higgs boson decays to hadrons

Study hadronic decays of the Higgs boson to extract Yukawa couplings.

Direct hadronic decays: bb, gg, cc.

Full or semi-hadronic decays also from: W* W, Z* Z, τ τ.

Peculiar kinematic features (invariant mass, missing energy). Neglected in the following.

Higgs branching ratios (all decays)

Higgs branching ratios (only direct hadronic decays)

Higgs: colour singlet decaying both to quarks and gluons.

Interesting for quark/gluon jet tagging and QCD dynamics.

Idea: distinguish different Higgs decays from the dynamics of the hadronic final state

Sensitivity to light quark Yuakwas from hadronic event shapes in e+e-→ZH

[Knobbe, Krauss, Reichelt, Schumann 2306.03682]

Measuring hadronic Higgs boson BRs at future lepton colliders

[Coloretti, Gehrmann-De Ridder, Preuss 2202.07333]

[Gehrmann-De Ridder, Preuss, Williams 2310.09354]

Expose differences between Higgs decay to bottom quarks or gluons via:

[Gehrmann-De Ridder, Preuss, Reichelt, Schumann 2403.06929]

02/10/2025

NLO

 $H \rightarrow gg$

JET RATES IN HADRONIC HIGGS DECAYS

Jet rates in electron-positron annihilation

Let's consider e⁺e⁻annihilation to hadrons and the Durham jet reconstruction algorithm:

• for each pair (i,i) of jet candidates compute the distance: [Catani, Dokshitzer, Olsson, Turnock, Webber Phys. Lett. B 269 (1991)] [Brown, Stirling Phys. Lett. B 252 (1990)]

$$y_{ij}^D = \frac{2\min(E_i^2, E_j^2)}{Q^2} (1 - \cos\theta_{ij}) \,,$$
 invariant mass of all hadronic particles

- if $y_{ij}^D < y_{\rm cut}$, cluster i and j together, Repeat; jet resolution parameter

The algorithm stops when all $y_{ij}^D > y_{\rm cut}$ and events are classified as 2, 3, 4, ... -jet events.

n-jet rate $R(n, y_{\text{cut}})$: fraction of events classified as n-jet events.

Jet rates are precision observables (NNLO and N³LO).

Jet rates at LEP

[Gehrmann-De Ridder, Gehrmann, Glover, Heinrich 0802.081] Matteo Marcoli

Jet rates in the hadronic decays of a Higgs boson

We consider a Higgs boson at rest (neglect production mode) decaying hadronically.

- massless b (apart from Yuakwa interaction) ***
- analogous contribution from charm

$$\Gamma_{H\to gg}^{(0)} = \frac{\alpha_s^2(\mu_R)m_H^3(N_c^2 - 1)}{576\pi^3 v^2}$$

- effective vertex: infinite top mass limit
- finite t, b and c mass and EW vertex corrections included by rescaling

Inclusive decay widths at order k in QCD:

$$\Gamma_{H \to b\bar{b}}^{(k)} = \Gamma_{H \to b\bar{b}}^{(0)} \left(1 + \sum_{n=1}^{k} \alpha_s^n(\mu_R) C_{b\bar{b}}^{(n)} \right)$$

$$\Gamma_{H \to gg}^{(k)} = \Gamma_{H \to gg}^{(0)} \left(1 + \sum_{n=1}^{k} \alpha_s^n(\mu_R) C_{gg}^{(n)} \right)$$

Expansion coefficients know up to k=4

[Herzog, Ruijl, Ueda, Vermaseren, Vogt 1707.01044]

*** The interference between the two modes vanishes. We verified that it is anyway negligible for the observables we consider.

Setup of the calculations

We compute the decay of a Higgs boson into three jets $\mathbf{H} \rightarrow \mathbf{j} \mathbf{j} \mathbf{j}$ up to NNLO in QCD;

Form this we can extract the **3-jet rate at NNLO and the 2-jet rate at N³LO**;

$$R_X^{(k)}(n, y_{\text{cut}}) = \frac{\Gamma_{H \to X}^{(k)}(n, y_{\text{cut}})}{\Gamma_{H \to X}^{(k)}}$$
$$\sum_{n=2}^{k+2} R_X^{(k)}(n, y_{\text{cut}}) = 1$$

Previous calculation in the Yukawa mode. **Novel results in the gluonic mode**.

[Mondini, Williams 1904.08961]

[Mondini, Schiavi, Williams 1904.08960]

Physical parameters:
$$m_H=125.09\,\mathrm{GeV}$$
 $m_Z=91.200\,\mathrm{GeV}$

$$v = 246.22 \,\text{GeV}$$
 $\alpha_s(m_Z) = 0.11800$ $m_t(m_H) = 166.48 \,\text{GeV}$

$$y_b(m_H) = m_b(m_H)/v = 0.011309$$
 $y_c(m_H) = m_c(m_H)/v = 0.0024629$

[Gehrmann-De Ridder, Gehrmann, Glover 0505111]

We rely on the antenna subtraction method for the removal of infrared singularities up to NNLO.

[Fox, Glover, MM 2410.12904]

In particular on the **generalised antenna functions** we recently computed, which provide improved convergence and a significant computational speedup.

[NNLOIET Collaboration, A. Huss et al. 2503.22804]

The computation is performed within the *NNLOJET* parton-level event generator.

02/10/2025 Matteo Marcoli 1

Jet rates in the hadronic decays of a Higgs boson

- Hbb mode follows jet rates in electron-positron annihilation (quark radiators);
- Higher multiplicity rates arise earlier for Hgg;
- Breakdown of fixed-order calculations when jet-rates turn negative;
- Breakdown happens earlier for for Hgg (y_{cut} = 0.001)

[Fox, Gehrmann-De Ridder, Gehrmann, Glover, MM, Preuss 2502.17333]

Jet rates in the hadronic decays of a Higgs boson

- Enhanced gluonic fraction in the hard three-jet region: from 11% (inclusive) to ~25%;
- Pure Yuakwa mode in two-jet events at low y_{cut};
- At large y_{cut}, relative fraction reach inclusive ones (85%, 11%, 4%) as expected;

[Fox, Gehrmann-De Ridder, Gehrmann, Glover, MM, Preuss 2502.17333]

EVENT SHAPES IN HADRONIC HIGGS DECAYS

Event shapes in the hadronic decays of a Higgs boson

Event shapes are an alternative to jet cross-sections. They measure the geometric distribution of radiation. Classic example: the **thrust**.

$$T = \max_{\vec{n}} \left(\frac{\sum_{i} \vec{p_i} \cdot \vec{n}}{\sum_{i} \vec{p_i}} \right)$$

$$\tau \equiv 1 - T = \min_{\vec{n}} \left(1 - \frac{\sum_{i} \vec{p_i} \cdot \vec{n}}{\sum_{i} \vec{p_i}} \right)$$

$$T = 0.998$$
, $\tau = 0.002$ $T = 0.65$, $\tau = 0.35$

$$T = 0.65, \quad \tau = 0.35$$

pencil-like back to back spherical isotropic

We consider the same setup as before and compute **NNLO**-accurate predictions for **event shapes in hadronic Higgs decays** for the two modes.

- Also here, Hgg fraction enhanced (>40%) in the high-multiplicity hard region;
- Perturbative predictions for the gluonic mode breaks down earlier than for the Yukawa one;
- All-order resummation effects are important when τ→ 0 (back-to-back region);
- Resummation more important for the gluonic mode.

Thrust distribution and more

Similar observations for other event shapes too: C-parameter and total jet broadening.

[Fox, Gehrmann-De Ridder, Gehrmann, Glover, MM, Preuss 2508.14282]

Thrust resummation

Does resummation change the story close to the back-to-back region?

- Matched resummation and fixed order calculation for thrust at NNLO+NNLL;
- The gluonic mode fraction still vanishes as $\tau \rightarrow 0$;
- Around τ =0.015 the **charm** contribution becomes more important than the gluonic one.

PRELIMINARY

JET OBSERVABLES IN e⁺e⁻→ZH

Not only decay: e+e- → ZH at future colliders

We consider the **ZH production** process at lepton colliders, with the (off-shell) Z boson decaying **leptonically**.

Again, we compare the **Yukawa** and **gluonic** mode for the (off-shell) Higgs decay at **NNLO**.

In this process, the hadronic cluster is **not** in the c.o.m. of the collision any more.

$$\sqrt{s} = 240.00 \,\text{GeV}$$
 $m_H = 125.09 \,\text{GeV}$ $m_Z = 91.188 \,\text{GeV}$

The Higgs boson is boosted with respect to the c.o.m. of the collision:

$$\gamma = \frac{E_H}{m_H} = \frac{s + m_H^2 - m_Z^2}{2m_H\sqrt{s}} \approx 1.08$$

$$\beta = \sqrt{1 - \frac{1}{\gamma^2}} \approx 0.38$$

numbers correct for on-shell Z and H

Leading and sub-leading jet energies

$$\frac{E_{\pm}^{lab}}{m_H} = \frac{1}{2} \left(\gamma \pm \sqrt{\gamma^2 - 1} |\cos \theta| \right)$$

at LO, with on-shell Z and H

02/10/2025

angle w.r.t. Higgs direction

leading jet: $\max\left(\frac{E_+^{lab}}{m_H}\right) \approx 0.74\,, \quad \min\left(\frac{E_+^{lab}}{m_H}\right) \approx 0.54\,$

subleading jet: $\max\left(\frac{E_-^{lab}}{m_H}\right) \approx 0.54\,, \quad \min\left(\frac{E_-^{lab}}{m_H}\right) \approx 0.33\,$

21

Sub-leading-jet energy Leading-jet energy **NNLOJET NNLOJET** $\sqrt{s} = 240 \text{ GeV}$ $\sqrt{s} = 240 \text{ GeV}$ $\mu_R = m_H$ $\mu_R = m_H$ $y_{cut} = 0.03$ $y_{cut} = 0.03$ 10^{-2} 10^{-2} enhanced gluonic fraction Ratio to $H \to b \bar{b}$ 0+0.10.3 0.9 0.2 0.3 0.4 0.5 0.7 0.2 0.40.5 0.6 0.7 0.8 0.6 E_{i_2}/m_H E_{i_1}/m_H

Matteo Marcoli

Angle between jets

$$\cos \theta_{j_1 j_2} = \frac{p_1 \cdot p_2}{|p_1||p_2|} \bigg|_{lab} = -1 + 2\beta^2 \approx -1 + 2(0.38)^2 \approx -0.71$$

PRELIMINARY

at LO, with on-shell Z and H

SUMMARY AND OUTLOOK

Summary:

- The **hadronic decays of a Higgs boson** offer opportunities for the extraction of Yukawa couplings, as well as the study of QCD dynamics (quark/gluon jets);
- We presented the **NNLO**-accurate predictions for **jet rates**, **event shapes** (with **resummation**) in hadronic Higgs decays and for jet observables in **ZH production at lepton colliders**;
- Several observables can be used to improve the sensitivity to different decay modes. In general, gluonic decays are enhanced in the multi-jet region and suppressed in the back-to-back limit;

Outlook:

- Inclusion of quark mass effects, exact top-mass dependence in gluonic mode;
- Impact of H → V*V → hadrons;
- Higher multiplicity at NNLO: decay to 4-jet, event shapes in e+e- → ZH;
- Hadronically decaying Z in e+e- → ZH: study the interplay between the two hadronic clusters;

Thank you for your attention!