

Gravothermalizing into Primordial Black Holes, Boson Stars, and Cannibal Stars

Takeshi Kobayashi

2410.18948 w/ Pranjal Ralegankar, Daniele Perri

BeyondWIMPs, Oxford

Gravothermalizing into Primordial Black Holes, Boson Stars, and Cannibal Stars

Takeshi Kobayashi

2410.18948 w/ Pranjal Ralegankar, Daniele Perri

PBH FORMATION - THE USUAL STORY

Ingredient: enhanced density perturbation on small scales

Perturbations collapse into PBHs upon horizon re-entry

PBH FORMATION - A NEW STORY

Ingredient: early universe epoch dominated by non-relativistic particles with self-interactions

PBH FORMATION - A NEW STORY

Ingredient: early universe epoch dominated by non-relativistic particles with self-interactions

Halo forms,

PBH FORMATION - A NEW STORY

Ingredient: early universe epoch dominated by non-relativistic particles with self-interactions

Halo forms, then undergo a gravothermal collapse into PBHs

OUTLINE

- I. Gravothermal catastrophe
- 2. PBHs from gravothermal catastrophe
- 3. Toy model

OUTLINE

- I. Gravothermal catastrophe
- 2. PBHs from gravothermal catastrophe
- 3. Toy model

Lynden-Bell, Eggleton '80

Gravitationally bound systems in virial equilibrium have negative heat capacities

Lynden-Bell, Eggleton '80

Gravitationally bound systems in virial equilibrium have negative heat capacities

$$2K = -V \qquad K \propto \langle v^2 \rangle \propto T$$

$$E = K + V = -K \propto -T$$

$$C \equiv \frac{dE}{dT} < 0$$

Lynden-Bell, Eggleton '80

Gravitationally bound systems in virial equilibrium have negative heat capacities

$$2K = -V \qquad K \propto \langle v^2 \rangle \propto T$$

$$E = K + V = -K \propto -T$$

$$C \equiv \frac{dE}{dT} < 0$$

Gets hotter by losing energy

Lynden-Bell, Eggleton '80

C < 0 inner part of halo</pre>

C > 0

outside (heat bath)

Lynden-Bell, Eggleton '80

If initially $T_{\rm in} > T_{\rm out}$

C < 0 inner part of halo

C > 0

outside (heat bath)

Lynden-Bell, Eggleton '80

Lynden-Bell, Eggleton '80

DARK MATTER

Gravothermal evolution of DM halo only with gravitational interactions is slow

SELF-INTERACTING DARK MATTER

Gravothermal evolution of DM halo only with gravitational interactions is slow... but speeds up with self-scatterings

$$\tau_{\rm r} = \frac{\lambda}{\nu} \sim 10^9 \,{\rm yr} \left(\frac{10^{-3}}{\nu}\right) \left(\frac{1 \,{\rm GeV/cm^3}}{\rho}\right) \left(\frac{1 \,{\rm cm^2/g}}{\sigma/m}\right)$$

OUTLINE

- I. Gravothermal catastrophe
- 2. PBHs from gravothermal catastrophe
- 3. Toy model

GRAVOTHERMAL CATASTROPHE DURING EARLY MATTER DOMINATION

- Consider an early universe epoch dominated by nonrelativistic particles (e.g. inflaton, modulus, but not DM), which eventually decay and reheat the universe
- If this epoch lasts long enough $(a_f/a_i > 10^5)$, halos form
- If the particles have self-interactions, halos undergo gravothermal collapse into BHs

SPECIFIC FEATURES

- Halos from early matter domination are dense: $\rho_s \propto \bar{\rho} c^3$ with $c \sim 30$ $_{\rm Zhao,\,Jing,\,Mo,\,Boerner\,'09}$
- Combination with a long early matter domination prompts gravothermal evolution
- But it's not just BHs forming (cannibalism & condensation)

CANNIBALISM

CANNIBALISM

CANNIBALISM

* Cannibal annihilations can be switched off if the particles carry charge, e.g. complex scalar with global U(1)

CONDENSATION

If the particles are bosons, a BEC forms when $\lambda_{\rm dB} \sim n^{-1/3}$

CONDENSATION

If the particles are bosons, a BEC forms when $\lambda_{
m dB} \sim n^{-1/3}$

The condensed core can continue to contract, and turn into a boson star supported by quantum pressure and/or self-interaction

CONDENSATION

If the particles are bosons, a BEC forms when $\lambda_{
m dB} \sim n^{-1/3}$

The condensed core can continue to contract, and turn into a boson star supported by quantum pressure and/or self-interaction

* Boson stars with attractive self-interactions can end up in a bosenova

Levkov, Panin, Tkachev '17

FATE OF STARS

- Cannibal and boson stars can grow with gravothermal accretion, and eventually collapse into BHs
- Otherwise they disappear at the end of matter domination as the particles decay

FATE OF STARS

- Cannibal and boson stars can grow with gravothermal accretion, and eventually collapse into BHs
- Otherwise they disappear at the end of matter domination as the particles decay

How effective is the accretion?

ACCRETION

- The mass fraction of the halo that ends up in a BH is highly uncertain
- It can lie between $10^{-16} \leq M_{\rm BH}/M_{\rm halo} \leq 10^{-3}$, with the upper limit set by energy conservation*
- We treat this fraction as a free parameter

* Lower limit from the minimum mass in short mean free path regime. Upper limit can change with Bondi accretion.

OVERALL PICTURE

OVERALL PICTURE

technical specifications:

- halo abundance estimate with Press-Schechter (ignore subhalo collapse)
- gravothermal evolution: $\rho_c \propto r_c^{-\alpha}$ with $\alpha \approx 2.2 \rightarrow 2.5$
- star formation thresholds can be estimated
- star evolution requires some guesswork

OUTLINE

- I. Gravothermal catastrophe
- 2. PBHs from gravothermal catastrophe
- 3. Toy model

EARLY MATTER DOMINATION (EMD) SCALAR TOY MODEL

 $L = -\frac{1}{2}(\partial\phi)^2 - \frac{1}{2}m^2\phi^2 - \frac{\lambda}{4!}\phi^4 + \text{(coupling to SM)}$ $(\lambda > 0)$

EARLY MATTER DOMINATION (EMD) SCALAR TOY MODEL

Thermally distributed ϕ dominates the early universe:

- EMD begins when $T \sim m$ (i.e. $\rho \sim m^4$)
- EMD ends when ϕ decays (i.e. $H\sim\Gamma$)

EARLY MATTER DOMINATION (EMD) SCALAR TOY MODEL

Thermally distributed ϕ dominates the early universe:

- EMD begins when $T \sim m$ (i.e. $\rho \sim m^4$)
- EMD ends when ϕ decays (i.e. $H\sim\Gamma$)

free parameters: {*m*,
$$\Gamma$$
, λ }
or { $a_{\rm rh}/a_{\rm i}$, $T_{\rm rh}$, $\tau_{\rm relax}$ }

PBHs produced from direct collapse of halo core, and from collapse of cannibal/boson stars

MAXIMAL ACCRETION $(M_{\rm BH}/M_{\rm halo} \sim 10^{-3})$

MAXIMAL ACCRETION $(M_{\rm BH}/M_{\rm halo} \sim 10^{-3})$

PBHs produced from direct collapse of halo core, and from collapse of cannibal/boson stars

MAXIMAL ACCRETION ($M_{BH}/M_{halo} \sim 10^{-3}$) PBHs produced from direct collapse of halo core,

and from collapse of cannibal/boson stars

SUMMARY

- Gravothermal effects during early matter domination produces PBHs (e.g. asteroid-mass range), and boson/cannibal stars
- Relic PBHs can be used to probe early matter domination, e.g. reheating epoch
- Formation of PBH binaries?

• Extremely rich astrophysics emerges from simple particle models during early matter domination, and we've just seen the tip of the iceberg

BACKUP SLIDES

BBN & CMB CONSTRAINTS

