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PBH FORMATION - THE USUAL STORY

Ingredient: enhanced density perturbation on small scales

Perturbations collapse into PBHs upon horizon re-entry

P(k)
1

- @

10—9 _




PBH FORMATION - A NEW STORY

Ingredient: early universe epoch dominated by
non-relativistic particles with self-interactions
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PBH FORMATION - A NEW STORY

Ingredient: early universe epoch dominated by
non-relativistic particles with self-interactions

Halo forms, then undergo a gravothermal collapse into PBHSs
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GRAVOTHERMAL CATASTROPHE

Lynden-Bell, Eggleton ‘80

Gravitationally bound systems in virial equilibrium
have negative heat capacities

2K=-V Kx (V)T
E=K+V=—Kx-T

dE
C = <0
dTl

Gets hotter by losing energy
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GRAVOTHERMAL CATASTROPHE

Lynden-Bell, Eggleton ‘80

finitially T, > T,

inner part becomes
hotter unboundedly

C>0
outside (heat bath)



DARK MAT TER

Gravothermal evolution of DM halo only with gravitational
interactions Is slow




SELF-INTERACTING DARK MAT TER

Gravothermal evolution of DM halo only with gravitational
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SELF-INTERACTING DARK MAT TER

Gravothermal evolution of DM halo only with gravitational
interactions is slow... but speeds up with self-scatterings
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SIDM may solve core-cusp problem, but does not form BHs
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GRAVOTHERMAL CATASTROPHE DURING
FEARLY MAT TER DOMINATION

» Consider an early universe epoch dominated by non-
relativistic particles (e.g. inflaton, modulus, but not DM),
which eventually decay and reheat the universe

- If this epoch lasts long enough (a,/a; > 10°), halos form

* |f the particles have self-interactions, halos undergo
oravothermal collapse into BHS



SPECIFIC FEATURES

* Halos from early matter domination are dense:
— 3 :
ps X pC Wlth C ~ 30 /hao, Jing, Mo, Boerner '09

- Combination with a long early matter domination
prompts gravothermal evolution

* But it's not just BHs forming (cannibalism & condensation)
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CANNIBALISM

8

2= scattering 4—2 annihilation

gravothermal collase

Number-changing process
produces heat, which can stop the
collapse and form a cannibal star nibal heat

* Cannibal annihilations can be switched off

if the particles carry charge, /
e.g. complex scalar with global U(1)

N\
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CONDENSATION

f the particles are bosons, a BEC forms when Az ~ n~ 173

N 4

gravity

The condensed core can continue to
contract, and turn into a boson star
supported by guantum pressure
and/or self-interaction

/ N

* Boson stars with attractive self-interactions can end up In a bosenova

Levkov, Panin, Tkachev "I /



FATE OF STARS

» Cannibal and boson stars can grow with gravothermal
accretion, and eventually collapse into BHs

» Otherwise they disappear at the end of matter domination

as the particles decay
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FATE OF STARS

» Cannibal and boson stars can grow with gravothermal
accretion, and eventually collapse into BHs

» Otherwise they disappear at the end of matter domination

as the particles decay
) @

How effective Is the accretion!?




ACCRETION

* T he mass fraction of the halo that ends up in a BH is
highly uncertain

It can lie between 10710 < My /M, . < 1077,
with the upper limit set by energy conservation®

* We treat this fraction as a free parameter

* Lower limit from the minimum mass in short mean free path regime.
Upper limit can change with Bondi accretion.
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technical specifications:

(1

- gsravothermal evolution: p. o r.* with a = 2.2 — 2.5

.S'
CS'

onore subhalo collapse)

ar formation thresholds can be estimated

(ar evolution requires some guesswork

anniba
>
star

)

* halo abundance estimate with Press-Schechter
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EARLY MAT TER DOMINATION (EMD)
SCALAR TOY MODEL

_ Yoo oo Aoy |
L = 2(()gb) 2mq§ 4'gb + (coupling to SM)

(4> 0)

Thermally distributed ¢p dominates the early universe:
+ EMD begins when T ~ m (i.e.p ~ m*)
» EMD ends when ¢ decays (ie. H ~ 1)

free parameters: {m, I, A}

or {arh/ i, Trh’ Trelax}
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PBHs produced only from direct collapse of halo core
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MAXIMAL ACCRETION (Mgy/M,, 4, ~ 1072)

PBHs produced from direct collapse of halo core,
and from collapse of cannibal/boson stars

A =1 w/o cannibalism A =10"% w/ cannibalism

10°} ..
-
~
~
.
\' 5‘
. LY
'y .
104t <o
o
. -
1]
.
AR}
4

'R
» e ‘e
) - s
. “~
2 '
10 [ .
\J
.
i
.
L]

Trh [G eV]

10 10% 102 10" 10%
arn/a;




7-rh [GeV]

MAXIMAL ACCRETION (Mgy/M,, 4, ~ 1072)

PBHs produced from direct collapse of halo core,
and from collapse of cannibal/boson stars
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MAXIMAL ACCRETION (Mgy/M,, 4, ~ 1072)

PBHs produced from direct collapse of halo core,
and from collapse of cannibal/boson stars
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SUMMARY

» Gravothermal effects during early matter domination produces
PBHSs (e.g. asteroid-mass range), and boson/cannibal stars

* Relic PBHSs can be used to probe early matter domination,
e.g. reheating epoch

* Formation of PBH binaries!?
L RN SRR

* Extremely rich astrophysics emerges from simple particle
models during early matter domination, and we've just seen
the tip of the iceberg
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BBN & CMB CONSTRAINTS
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