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PBH FORMATION - THE USUAL STORY

Ingredient: enhanced density perturbation on small scales

Perturbations collapse into PBHs upon horizon re-entry
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PBH FORMATION - A NEW STORY

Ingredient: early universe epoch dominated by
non-relativistic particles with self-interactions

Halo forms, then undergo a gravothermal collapse into PBHs
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2K = − V K ∝ ⟨v2⟩ ∝ T

E = K + V = − K ∝ − T

C ≡ dE
dT

< 0

Gravitationally bound systems in virial equilibrium 
have negative heat capacities

Gets hotter by losing energy
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GRAVOTHERMAL CATASTROPHE
Lynden-Bell, Eggleton ‘80

C < 0
inner part of halo

If initially Tin > Tout

C > 0
outside (heat bath)

inner part becomes
hotter unboundedly
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SELF-INTERACTING DARK MATTER
Gravothermal evolution of DM halo only with gravitational 
interactions is slow

Koda, Shapiro ’11
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Balberg, Shapiro, Inagaki ’02

After  : core formation∼ τr After  : collapse into BH∼ 100τr

SIDM may solve core-cusp problem, but does not form BHs

τr = λ
v

∼ 109 yr ( 10−3

v ) ( 1 GeV/cm3

ρ ) ( 1 cm2/g
σ/m )

… but speeds up with self-scatterings
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GRAVOTHERMAL CATASTROPHE DURING
EARLY MATTER DOMINATION

• Consider an early universe epoch dominated by non-
relativistic particles (e.g. inflaton, modulus, but not DM), 
which eventually decay and reheat the universe

• If this epoch lasts long enough ( ), halos form

• If the particles have self-interactions, halos undergo 
gravothermal collapse into BHs

af /ai > 105



• Halos from early matter domination are dense:                  
  with  

• Combination with a long early matter domination         
prompts gravothermal evolution

• But it’s not just BHs forming (cannibalism & condensation)

ρs ∝ ρ̄c3 c ∼ 30

SPECIFIC FEATURES

Zhao, Jing, Mo, Boerner ’09
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CANNIBALISM

2→2 scattering 4→2 annihilation

Number-changing process 
produces heat, which can stop the 
collapse and form a cannibal star cannibal heating

gravothermal collase

* Cannibal annihilations can be switched off 
if the particles carry charge,                          
e.g. complex scalar with global U(1)
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CONDENSATION

If the particles are bosons, a BEC forms when λdB ∼ n−1/3

quantum pressure / 
repulsive self-interaction

gravity

The condensed core can continue to 
contract, and turn into a boson star 

supported by quantum pressure 
and/or self-interaction

* Boson stars with attractive self-interactions can end up in a bosenova
Levkov, Panin, Tkachev ’17
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accretion, and eventually collapse into BHs

• Otherwise they disappear at the end of matter domination 
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?



FATE OF STARS

• Cannibal and boson stars can grow with gravothermal 
accretion, and eventually collapse into BHs

• Otherwise they disappear at the end of matter domination 
as the particles decay

How effective is the accretion?

?



ACCRETION

• The mass fraction of the halo that ends up in a BH is 
highly uncertain

• It can lie between ,
  with the upper limit set by energy conservation*

• We treat this fraction as a free parameter

10−16 ≲ MBH/Mhalo ≲ 10−3

* Lower limit from the minimum mass in short mean free path regime.
   Upper limit can change with Bondi accretion.
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OVERALL PICTURE

boson
star

cannibal
star

PBH

k

P(k)

10−9 halo

technical specifications:
• halo abundance estimate with Press-Schechter 

(ignore subhalo collapse)
• gravothermal evolution:  with 
• star formation thresholds can be estimated
• star evolution requires some guesswork

ρc ∝ r−α
c α ≈ 2.2 → 2.5
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EARLY MATTER DOMINATION (EMD)
SCALAR TOY MODEL

Thermally distributed  dominates the early universe:
• EMD begins when  (i.e.  )
• EMD ends when  decays (i.e.  )

ϕ
T ∼ m ρ ∼ m4

ϕ H ∼ Γ

free parameters:   { }m, Γ, λ
or { }arh/ai, Trh, τrelax

(λ > 0)

L = − 1
2 (∂ϕ)2 − 1

2 m2ϕ2 − λ
4! ϕ4+ (coupling to SM)
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Carr, Kühnel
2006.02838

asteroid-mass PBHs
= DM

boson stars

PBHs
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Very efficient PBH production
(can also be used to probe EMD)



SUMMARY
• Gravothermal effects during early matter domination produces 

PBHs (e.g. asteroid-mass range), and boson/cannibal stars

• Relic PBHs can be used to probe early matter domination,   
e.g. reheating epoch

• Formation of PBH binaries?

• Extremely rich astrophysics emerges from simple particle 
models during early matter domination, and we’ve just seen 
the tip of the iceberg
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