
Listening for ultra-heavy DM with 
underwater acoustic detectors

Damon Cleaver, Christopher McCabe and Ciaran A.J. O’Hare 
BeyondWIMPs 2025, 10/04/25

1

Based on arXiv:2502.17593 (PRD in review)



Where in the DM spectrum are we focused?

ΩCDMh2 ∼ 0.120 ± 0.001
[Planck, 2018]

[T Lin, arXiv 1904.07915]
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Ultra-heavy Dark Matter

• Ultra-heavy dark matter is necessarily composite (if 
thermally produced) due to s-wave unitarity  

• Many different models for UHDM 

• PBH, Nuggets, Blobs, WIMPonium, Q-Balls etc… 

• Is there a nice model-independent way to treat them? 

• Answer: Yes (for some parts of parameter space) 
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Geometric UHDM
• Consider parameters of models where: 

• The DM is Planck-mass or larger 

• DM Radius  much larger than interaction length 

scale 

• Geometric cross section dominates i.e.  

• Parameterise the interaction in terms of  -> set by 

the theory -> make experimental statements about 
multiple models! 

Rχ

σχ ≈ πR2
χ

Rχ Interaction range

Macroscopic DM 
Candidate
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UHDM Direct Detection

• We parametrise UHDM in grams (g) 

•
DM Flux:   

• Need a very large detector (or very long integration time) to have significant 
number of events. 

• No hope for conventional detectors (LUX-ZEPLIN, XENONnT etc.) 

ϕχ ≈ 6 ( 1 g
mχ ) km−2 yr−1
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Current Constraints
• Annoying “gap” in 

constraints


• Mica underground - too 
much overburden


• Radar not sensitive 
enough - not enough 
ionisation


• What phenomena could 
we use to constrain this 
region?
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Acoustic Detection

• Idea: DM is weakly interacting enough 
to make it through the atmosphere 

• Reaches much more dense medium: the 
ocean 

• DM deposits energy into the ocean 
creating pressure waves 

• Detect pressure waves using a large 
hydrophone array 
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Neutrino Experiments

• Propositions for acoustic neutrino experiments with  hydrophone 
arrays [Lahmann, 2016] 

• Detect UHE neutrinos. Similar number density issues, but similarly high cross 
section 

• Acoustic propagation distance in water much greater than light -> less dense 
instrumentation 

• Energy deposition comes from hadronic showers 

𝒪(100 km3)
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Thermo-acoustic heating
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∇2p −
1
c2

s

∂2p
∂t2

= −
α
cp

∂2q(r, t)
∂t2

Acoustic pressure

Energy Deposition Density

p(r, t) =
α

4πcp ∫
d3r′ 

|r − r′ |
∂2q (r′ , t′ )

∂t2General Solution:

t′ = t − |r − r′ | /cs

Pressure waves come from thermo-acoustic heating, which obeys the following DE: 



What is  for UHDM?q
Taking a geometric cross section only and taking the number of scatters to infinity:
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dEχ

dz
= − ρseaσχv2

χ exp (−
z

ℓsea )
Where  is the characteristic length of the energy deposition:ℓsea

ℓsea =
mχ

2ρseaσχ
≃ 480 km × ( mχ

10−2 g ) ( 10−10 cm2

σχ )
  can be very long, in this case: ℓsea

dEχ

dz
≃ − ρseaσχv2

χ = const



Model energy deposition rate as Gaussian cylinder:

z

ρ

Where  is the characteristic scattering length of 

species  (found using SRIM software package). 

σA
A
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q(r) = ∑
A={H,O}

1
2π

dEA

dz
1
σ2

A
exp (−

ρ2

2σ2
A )

What is  for UHDM?q

Gaussian allows us to find analytic solutions for the 
pressure - turns out to be enough to capture the physics

σA



What is the pressure solution?
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Take infinitely long line track (good for large ), instantaneous energy deposition 

and take width much smaller than detection distance :

ℓDM
σA ≪ ρ

p(r, t; σA ≪ ρ) =
α

2πcp

dE
dz

c2
s

2πσ3
A

1
ρ

Ip ( t − ρ/cs

σA/cs )
Ip(A) = ∫

∞

0
dY Y exp (−

Y2

2 ) cos (A Y +
π
4 )

= −
πA

4 2(A2)1/4
exp (−

A2

4 ) [(A + A2) (I1/4 ( A2

4 ) − I3/4 ( A2

4 )) +
2

π ( A2K1/4 ( A2

4 ) − AK3/4 ( A2

4 ))]



What does  look like?p
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Shape determined by . 

Solution is bi-polar 

Large MPa signal for UHDM in target 
parameter regions - determined by pre-
factor  

Full pressure solution is sum of O and H 
contributions.

Ip ∼ 𝒪(1)

p(r, t; σA ≪ ρ) =
α

2πcp

dE
dz

c2
s

2πσ3
A

1
ρ

Ip ( t − ρ/cs

σA/cs )
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What does  look like?p
Can also find full frequency solution 
(must be solved numerically) by Fourier 
transform. 

Frequency cut-off set by  

Can “integrate out” width  to get an 
analytic approximation at lower freq: 

cs/σA

σA

p̃A(ρ, ω) ≈
ωα

2πcp

dEA

dz
π
2

H(2)
0 ( ρ ω

cs )



Is this the full story?

15

ã(ω) =
ω2

ω0cs
+

2
λ1

iω
ω1 + iω

+
2
λ2

iω
ω2 + iω

Need to account for other attenuation effects! Packaged into an absorption 

coefficient :ã(ω)

The pressure in frequency space becomes:

p̃a(ρ, ω) = exp (−
ã(ω)ρ

2 ) p̃(ρ, ω)

Chemical Relaxation Effects Viscous Absorption 

, λ1 = 64.4 km λ2 = 152.7 m
, ω1 = 8.37 kHz ω2 = 582.7 kHz

ω0 = 5.32 × 1011 kHz



Is this the full story?
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Takes frequency cut-off from 

 to . 

Cut-off profile is not Gaussian at 
certain characteristic distances 
for full sea water model.

𝒪(1011 Hz) 𝒪(105 Hz)



Pure water vs Sea Water
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Pure water: can be solved analytically (IFT) and still contains ! Retains shape 

but different width .

IP
σA → ρcs/ω0

ppure
a (ρ, t) =

α
2πcp

dE
dz

c2
s

2π

1
ρ ( ρcs

ω0 )
−3/2

Ip ( t − ρ/cs

ρcs/ω0 /cs )

Sea Water: Must be solved numerically

p(r, t; σA ≪ ρ) =
α

2πcp

dE
dz

c2
s

2πσ3
A

1
ρ

Ip ( t − ρ/cs

σA/cs )Un-attenuated case

Pure Water



What does the new pulse look like?

18

Nano-second pulse of MPa amplitude 
has become micro-second pulse at Pa 
amplitude 

Frequency dependent distortions in 
freq. domain -> modifications in bipolar 
pulse structure 



Pulse Asymmetry
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• Pure water: same shape no matter the 
distance -> constant asymmetry 

• Pulse gets more asymmetry from non-
Gaussian cut-off shape in freq space. 

• Maximal asymmetry near the 
characteristic absorption scale of 

magnesium sulphate ( m) λ2 = 152.7



Sensitivity Analysis
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Nevents = ϕχ(mχ) ⋅ Aarray ⋅ η ( dE
dz (σχ, vχ); pthr)

Characterise the sensitivity of a hydrophone array by the number of detectable events: 

DM Flux Array area Detection 
efficiency

Detection 
threshold

We now summarise how each parameter is calculated



Sensitivity Analysis: ϕχ(mχ)
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• DM arriving from below detector -> stopped by 

Earth 

• Maximal DM flux when hydrophone array has 

constellation Cygnus above 

• Distinct daily modulation -> different than UHE 

neutrinos!

• Modulation in the zenith angle distribution 

• Broad distribution -> less distinctive than flux 

modulation



Sensitivity Analysis: Aarray
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•
DM Flux:  , Need km scale dimensions 

• Aligns with UHE neutrino detection with proposals with  dimensions 

• We take 10km x 10km x 1km array in Mediterranean at depth 1.2km   

• Hydrophone distribution 45 x 45 x 10 grid -> lower end of neutrino studies 

• To account for edge effects, we extend 

ϕχ ≈ 4 ( 1 g
mχ ) km−2 yr−1

𝒪(100 km3)

Aarray = 10.5 km × 10.5 km



• Threshold for detection determined by noise levels in the experiment 

• Hydrophones optimised in 10-100 kHz range 

• Here, dominated by sea surface agitations due to weather conditions -> sea state 
noise. States 0-9, increasing in noise level. 

• Hydrophone self noise equivalent to sea state 0,  always sea state limited 

• Mediterranean average sea noise level at 2km depth recorded as approx. 5 mPa in 
the 20 - 43 kHz band -> take this as a baseline 

Sensitivity Analysis: pthr
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• Monte Carlo simulation for  tracks 

• Calculate pressure in all hydrophones in 
array 

• If  for at least 10 hydrophones, 
count track as detected 

• Used optimistic scenario  and 

pessimistic . Leads to factor 

7 reduction in sensitivity in 

𝒪(105)

p > pthr

pthr = 5 mPa
pthr = 35 mPa

dE/dz

Sensitivity Analysis: η
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• We make a choice that  is required for detection 

• Somewhat arbitrary, but comparable rates to UHE neutrino studies 

• Linear changes to  leads to linear changes in  or  sensitivity, 

so making other choices doesn’t change sensitivity significantly 

Nevents > 10 yr−1

Nevents σχ mχ

Sensitivity Analysis: Nevents
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Sensitivities
• Can put all this together to get a 

projected sensitivity for the array 

• Assuming proposed acoustic neutrino 
experiment parameters, could 
constrain the gap! 

• Complementary to Humans, Mica, 
Ohya and Cosmological Bounds


• Also sensitive to spin dependent cross 
section through hydrogen, Ohya is not!
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Punchline:
Future acoustic neutrino experiments could have the power to constrain 

UHDM candidates
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Thank you for listening! 
Any Questions?
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Backup slides
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Track Width + Gaussian Approx
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• Calculate range using slowing down 
approximation range of H and O using 
SRIM software package. 

• Find at typical recoil energy of 

 keV and   keV, the 

fit widths are  and 

 

• While Gaussian is not an excellent fit, 
the true nature of the distribution is 
irrelevant after attenuation 

EO = 30.2 EH = 1.9
σO = 0.14 μm

σH = 0.082 μm



Short Track Case
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q(ρ′ , ϕ′ , z′ ) =
1

2π
δ(ρ′ )

ρ′ 

dE
dz′ 0

exp (−
z′ 

ℓ )
If we let the DM energy deposition evolve in  direction but with no track width:z

We find a pressure solution:

p(ρ, z, t) =
α

2πcp

dE
dz′ 0

exp (−
z
ℓ ) ∂

∂t
Θ (t − t0)

t2 − t2
0

cosh
cs t2 − t2

0

ℓ
.

cosh
cs t2 − t2

0

ℓ
≈ cosh

t − t0
Δ(ℓ, ρ)

Δ(ℓ, ρ) =
ℓ2

2ρcs
≈ 104 μs × ( ℓ

100 m )
2

( 300 m
ρ )

 over  scales𝒪(1) μs
Same pre-factor as constant  case 

but with extra exponential factor
dE/dz



Detection Efficiency for Short Tracks
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• We extend the detection efficiency 

calculation to varying track length  

• Track lengths of  match the 

constant  calculation 

• Using these detection efficiencies leads 
to the second “bump” in the sensitivity 
region 

ℓDM

𝒪(20 km)
dE/dz


