(Almost) Minimal Dark Matter

Spencer Griffith

Ohio State University

Collaborators: John Beacom Laura Honorez Lopez Juri Smirnov

Outline

• Dark matter, what even is it?

• A very WIMP-y miracle

• Minimal dark matter (or taking WIMPs seriously)

• Minimal dark matter coupled to the Higgs

Dark matter, what even is it?

What Is Matter?

What Is Dark Matter?

Why Is Dark Matter?

Freese (2008)

Why Is Dark Matter?

Planck Collaboration (2018)

7

Why Is Dark Matter?

What Is Dark Matter (Again)?

Not baryonic

Stable (or at least very long lived)

Electrically neutral (or at least very small charge)

Cold (or at least not hot)

What Is Dark Matter (Last Time, I Promise)? 10

Weakly Interacting Massive Particles (WIMPs)

(Google says this is what these look like apparently)

Axions & axion-like particles

Primordial black holes

A Very WIMP-y Miracle

Freeze Out

The WIMP Miracle

Boltzmann Equation

$$\frac{1}{a^3} \frac{d(n_{\chi} a^3)}{dt} = - \langle \sigma_{\chi\chi} v \rangle (n_{\chi}^2 - n_{\chi,eq}^2)$$

Relic Abundance

$$\Omega_{\chi} \approx 0.1 \frac{x_f}{\sqrt{g_*(M_{\chi})}} \frac{10^{-8} \text{GeV}^{-2}}{\langle \sigma_{\chi\chi} v \rangle}$$

Cross Section

$$\sqrt{<\sigma_{\chi\chi}v>}\approx 0.1\sqrt{G_F}$$

The WIMP Mass

Assume this

Require this

Stuck with this

The WIMP Mass

Leane, Slatyer, Beacom, Ng (2018)

Minimal Dark Matter

(or Taking WIMPs Seriously)

17

Make up some symmetries, $SU(2)_L \times U(1)$ seem fine, and DEMAND they be enforced!

Left
$$(\psi_{i,L})$$
 and right $(\psi_{e,R})$ handed particles live in
different representations...because why not?
i.e. $\psi_{e,L} = (\nu_e, e_L), \psi_{e,R} = e_R$

Postulate Higgs (ϕ) doublet with $Y_h = \frac{1}{2}$ and non-zero VEV... because we didn't have enough particles before.

Make a gauge invariant Lagrangian (we care about these terms, the rest are probably fine too though): $\mathcal{L} \supset \sum_{i,L,R} \overline{\psi_i} \gamma^{\mu} (i\partial_{\mu} - ig_2 A^a_{\mu} T^a - ig_1 Y_{\psi_i} B^{\mu}) \psi_i - \lambda_i (\overline{\psi_{i,L}} \phi \psi_{i,R} + h.c.)$

Done! P.S. $Q_{\psi} = T_{\psi}^{3} + Y_{\psi}$, this is important later

Doing the Bare Minimum

The cross section is close to weak multiplets...

• And we know how weak multiplets work...

• Let's take the "weak" in WIMPs seriously and invent a new SU(2) multiplet!

Standard ModelTripletQuadrupletY = -1/2Y = 0 (Majorana)Y = 1/2 (Dirac)

Cool Story...Does it Work?

- Not baryonic
 - Yup!
- Stable (or at least very long lived)
 - Kind of?
- Electrically neutral (or at least very small charge)
 - If we choose Y_{χ} correctly

Cool Story...Does it Work (Part 2)?

• Cold

A Few Complications

Hisano, Matsumoto, Nagai, Saito, Senami (2006)

Mitridate, Redi, Smirnov, Strumia (2018)

Finding This Stuff

Show Me That Dark Matter!

Bottaro, Buttazzo, Costa...(2022)

Minimal Dark Matter Coupled to the Higgs

Adding a Multiplet

• If one multiplet is good, then more are better!

30

Long Range Potentials

31

The Non-Relativistic Potential

Mixed States

33

Bound State Formation

34

This Seems Like a Lot of Work, What's the Point? 35

But What's Actually the Point?

What's Left to Do?

Actually calculate masses

What's Left to Do?

So far we've been working in unbroken electroweak symmetry...can we?

What's Left to Do?

Thermal effects

- Dark matter exists, it's a real thing!
- A minimal realization of WIMPs, adding a single weak multiplet to the SM, is close to ruled out
- Adding a second multiplet can alleviate this pressure
- Doing this is a pain because of non-perturbative effects